A recommendation system for effective learning strategies: An integrated approach using context-dependent DEA

计算机科学 背景(考古学) 数据包络分析 聚类分析 透视图(图形) 机器学习 人工智能 知识管理 数学 生物 数学优化 古生物学
作者
Lu‐Tao Zhao,Dai-Song Wang,Feng-Yun Liang,Jian Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118535-118535 被引量:16
标识
DOI:10.1016/j.eswa.2022.118535
摘要

Universities have been focusing on increasing individualized training and providing appropriate education for students. The individual differences and learning needs of college students should be given enough attention. From the perspective of learning efficiency, we establish a clustering hierarchical progressive improvement model (CHPI), which is based on cluster analysis and context-dependent data envelopment analysis (DEA) methods. The CHPI clusters students' ontological features, employs the context-dependent DEA method to stratify students of different classes, and calculates measures, such as obstacles, to determine the reference path for individuals with inefficient learning processes. The learning strategies are determined according to the gap between the inefficient individual to be improved and the individuals on the reference path. By the study of college English courses as an example, it is found that the CHPI can accurately recommend targeted learning strategies to satisfy the individual needs of college students so that the learning of individuals with inefficient learning processes in a certain stage can be effectively improved. In addition, CHPI can provide specific, efficient suggestions to improve learning efficiency comparing to existing recommendation systems, and has great potential in promoting the integration of education-related researches and expert systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静发布了新的文献求助10
刚刚
gr发布了新的文献求助10
刚刚
1秒前
1秒前
开元完成签到,获得积分10
1秒前
星空完成签到,获得积分10
1秒前
流苏33完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
明亮的lunacake完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
jasmine发布了新的文献求助10
2秒前
2秒前
orixero应助Andrew采纳,获得10
2秒前
阿花完成签到,获得积分10
2秒前
凉笙墨染完成签到,获得积分10
3秒前
小马甲应助grata采纳,获得10
3秒前
生而追梦不止完成签到,获得积分10
3秒前
酷波er应助科研通管家采纳,获得30
3秒前
黑猫乾杯应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
SU15964707813完成签到,获得积分10
4秒前
单薄绿竹完成签到,获得积分10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
昭奚发布了新的文献求助30
4秒前
科研通AI2S应助聪慧若风采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
阿喵完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
小小油应助科研通管家采纳,获得20
4秒前
黑猫乾杯应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
SciGPT应助夕荀采纳,获得10
4秒前
keyan应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
shaqima发布了新的文献求助10
4秒前
GPTea应助科研通管家采纳,获得20
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188