A recommendation system for effective learning strategies: An integrated approach using context-dependent DEA

计算机科学 背景(考古学) 数据包络分析 聚类分析 透视图(图形) 机器学习 人工智能 知识管理 数学 生物 数学优化 古生物学
作者
Lu Zhao,Dai-Song Wang,Feng-Yun Liang,Jian Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118535-118535 被引量:3
标识
DOI:10.1016/j.eswa.2022.118535
摘要

Universities have been focusing on increasing individualized training and providing appropriate education for students. The individual differences and learning needs of college students should be given enough attention. From the perspective of learning efficiency, we establish a clustering hierarchical progressive improvement model (CHPI), which is based on cluster analysis and context-dependent data envelopment analysis (DEA) methods. The CHPI clusters students' ontological features, employs the context-dependent DEA method to stratify students of different classes, and calculates measures, such as obstacles, to determine the reference path for individuals with inefficient learning processes. The learning strategies are determined according to the gap between the inefficient individual to be improved and the individuals on the reference path. By the study of college English courses as an example, it is found that the CHPI can accurately recommend targeted learning strategies to satisfy the individual needs of college students so that the learning of individuals with inefficient learning processes in a certain stage can be effectively improved. In addition, CHPI can provide specific, efficient suggestions to improve learning efficiency comparing to existing recommendation systems, and has great potential in promoting the integration of education-related researches and expert systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wu完成签到,获得积分10
刚刚
刚刚
1秒前
MADKAI发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助111采纳,获得10
2秒前
Accept应助wintercyan采纳,获得20
2秒前
哲999完成签到,获得积分10
2秒前
Mian完成签到,获得积分10
2秒前
3秒前
3秒前
于嗣濠完成签到 ,获得积分10
3秒前
36456657应助CC采纳,获得10
3秒前
优雅山柏发布了新的文献求助10
4秒前
Jacky完成签到,获得积分10
4秒前
脑洞疼应助无情的白桃采纳,获得10
4秒前
mm发布了新的文献求助10
4秒前
5秒前
5秒前
zoko发布了新的文献求助10
5秒前
5秒前
曾经的臻发布了新的文献求助10
5秒前
华仔应助S1mple_gentleman采纳,获得10
5秒前
科研通AI5应助CC采纳,获得10
5秒前
5秒前
6秒前
6秒前
张静静完成签到,获得积分10
7秒前
7秒前
震666发布了新的文献求助30
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
117发布了新的文献求助10
7秒前
8秒前
8秒前
酶没美镁完成签到,获得积分10
8秒前
小二郎应助Rui采纳,获得10
8秒前
Libra完成签到,获得积分10
9秒前
雪儿发布了新的文献求助30
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740