法拉第效率
密度泛函理论
催化作用
水溶液
电流密度
解吸
化学
动能
Atom(片上系统)
电化学
分析化学(期刊)
材料科学
物理化学
电极
计算化学
物理
色谱法
吸附
嵌入式系统
量子力学
生物化学
计算机科学
作者
Jia-Run Huang,Xiao‐Feng Qiu,Zhen-hua Zhao,Hao-Lin Zhu,Yan Chen Liu,Wen Shi,Pei-Qin Liao,Xiao-Ming Chen,Jia-Run Huang,Xiao‐Feng Qiu,Zhen-hua Zhao,Hao-Lin Zhu,Yan Chen Liu,Wen Shi,Pei-Qin Liao,Xiao-Ming Chen
出处
期刊:Angewandte Chemie
[Wiley]
日期:2022-09-07
卷期号:61 (44): e202210985-e202210985
被引量:102
标识
DOI:10.1002/anie.202210985
摘要
Abstract Electroreduction of CO 2 to CO is a promising approach for the cycling use of CO 2 , while it still suffers from impractical current density and durability. Here we report a single‐atom nanozyme ( Ni−N 5 −C ) that achieves industrial‐scale performance for CO 2 ‐to‐CO conversion with a Faradaic efficiency (FE) exceeded 97 % over −0.8–−2.4 V vs. RHE. The current density at −2.4 V vs. RHE reached a maximum of 1.23 A cm −2 (turnover frequency of 69.7 s −1 ) with an FE of 99.6 %. No obvious degradation was observed over 100 hours of continuous operation. Compared with the planar Ni−N 4 site, the square‐pyramidal Ni−N 5 site has an increase and a decrease in the and d xz / yz orbital energy levels, respectively, as revealed by density functional theory calculations. Thus, the Ni−N 5 catalytic site is more superior to activate CO 2 molecule and reduce the energy barriers as well as promote the CO desorption, thus boosting the kinetic activation process and catalytic activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI