细节
人工智能
模式识别(心理学)
计算机科学
指纹(计算)
指纹识别
自编码
模板
匹配(统计)
融合
模板匹配
计算机视觉
图像(数学)
数学
深度学习
语言学
统计
哲学
程序设计语言
作者
Alperen Elihoş,Berkay Selbes,Burak Balcı,Yusuf Artan
标识
DOI:10.1109/siu55565.2022.9864906
摘要
In this study, we present a comparison study towards improving latent fingerprint image recognition accuracy using fusion techniques on various minutia extraction templates. Image enhancement techniques applied to latent fingerprint images remove noise and yields a novel minutiae template for these images. It is shown that combining fingerprint matching scores obtained for different templates using fusion methods improves latent image recognition performance considerably. Fusion of minutiaes templates obtained as a result of giving the images enriched with the STFT method as input to the FingerNet method, the template obtained as the input of the raw fingerprint images to the FingerNet, and the minutiae obtained with the autoencoder approach resulted in the best performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI