次氯酸
荧光
斯托克斯位移
红外线的
线粒体
化学
生物物理学
核磁共振
生物化学
物理
光学
生物
作者
Wei Hu,Qiang Tang,Chenchen Li,Longfang Ren,Fei Cheng,Baoshuai Wang,Mingli Li,Xinjian Song,Tony D. James
出处
期刊:Chemical Science
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:13 (37): 11140-11149
被引量:23
摘要
Small-molecule near-infrared (NIR) imaging facilitates deep tissue penetration, low autofluorescence, non-invasive visualization, and a relatively simple operation. As such it has emerged as a popular technique for tracking biological species and events. However, the small Stokes shift of most NIR dyes often results in a low signal-to-noise ratio and self-quenching due to crosstalk between the excitation and emission spectra. With this research, we developed a NIR-based fluorescent probe WD-HOCl for hypochlorous acid (HOCl) detection using the NIR dye TJ730 as the fluorophore, which exhibits a large Stokes shift of 156 nm, with no crosstalk between the excitation and emission spectra. It contains acyl hydrazide as the responsive group and a pyridinium cation as the mitochondria-targeting group. The fluorescence intensity of WD-HOCl was enhanced by 30.1-fold after reacting with HOCl. Imaging studies performed using BV-2 cells indicated that WD-HOCl could be used for endogenous HOCl detection and imaging in living cells exposed to glucose and oxygen deprivation/reperfusion. Finally, we demonstrated that inhibiting the expression of NOX2 reduced the HOCl levels and the severity of oxidative stress during stroke in a mouse model.
科研通智能强力驱动
Strongly Powered by AbleSci AI