Effects of twin orientation and twin boundary spacing on the plastic deformation behaviors in Ni nanowires

材料科学 纳米线 晶体孪晶 变形(气象学) 方向(向量空间) 复合材料 几何学 微观结构 纳米技术 数学
作者
Ying Zhang,Yuxuan Hou,Zheng He,Ligong Zhao,Shuangfeng Jia,Kaixuan Li,Huayu Peng,Peili Zhao,Lei Li,Weiwei Meng,Renhui Jiang,Jianbo Wang
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:135: 231-240 被引量:16
标识
DOI:10.1016/j.jmst.2022.06.049
摘要

Spreading twins throughout nano metals has been proved to effectively mediate the mechanical behaviors in face-centered-cubic (fcc) metals. However, the experimental investigation concerning the roles of twin boundary (TB) during deformation is rarely reported. Here, with the joint efforts of in-situ nanomechanical testing and theoretical studies, we provide a systematic investigation regarding the effects of TB orientation (θ, the angle between tensile loading direction and the normal of TB) and spacing on deformation mechanisms in Ni nanowires (NWs). As compared with single-crystalline counterparts, it is found that nano-twinned (nt) NWs with θ ∼0° exhibit limited ductility, whereas TB can serve as an effective blockage to the dislocation propagation. In contrast, in nt NWs with θ ∼20° and 55°, TB migration/detwinning induced by TB-dislocation reaction or partial dislocation movement dominates the plasticity, which contributes to enhanced NW ductility. Regarding nt NWs with θ ∼90°, dislocations are found to be able to transmit through the TBs, suggesting the limited effect of TB on the NW stretchability. Furthermore, decreasing TB spacing (λ) can facilitate the detwinning process and thus greatly enhance the ductility of NW with θ ∼55°. This study uncovers the distinct roles that TB can play during mechanical deformations in fcc NWs and provides an atomistic view into the direct linkage between macroscopic mechanical properties and microscopic deformation modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
skyer1完成签到,获得积分10
2秒前
2秒前
科目三应助Myles采纳,获得10
2秒前
元水云发布了新的文献求助10
2秒前
王永文发布了新的文献求助10
3秒前
3秒前
NancyDee完成签到,获得积分10
3秒前
科目三应助rosexu采纳,获得10
4秒前
小双发布了新的文献求助10
4秒前
小孙完成签到,获得积分10
4秒前
doxiao发布了新的文献求助10
5秒前
SYLH应助诺木采纳,获得20
6秒前
7秒前
8秒前
kingqjack发布了新的文献求助10
9秒前
打打应助甜甜的鞋子采纳,获得10
9秒前
毛豆应助NancyDee采纳,获得10
10秒前
碗碗完成签到,获得积分10
12秒前
13秒前
15秒前
16秒前
华仔应助一二采纳,获得10
17秒前
17秒前
17秒前
17秒前
疯狂的翠柏完成签到 ,获得积分10
17秒前
诺木完成签到,获得积分10
17秒前
搜集达人应助糊涂的大门采纳,获得10
18秒前
上官若男应助dong采纳,获得10
20秒前
所所应助小吴采纳,获得10
21秒前
zhao发布了新的文献求助10
21秒前
kingqjack完成签到,获得积分10
22秒前
qiao发布了新的文献求助10
23秒前
上官若男应助YORLAN采纳,获得10
23秒前
yesyesok发布了新的文献求助10
25秒前
舒适的藏花完成签到 ,获得积分10
26秒前
夏哈哈完成签到 ,获得积分10
26秒前
小双完成签到,获得积分20
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469879
求助须知:如何正确求助?哪些是违规求助? 3063087
关于积分的说明 9081400
捐赠科研通 2753353
什么是DOI,文献DOI怎么找? 1510835
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028