Explainable 1DCNN with demodulated frequency features method for fault diagnosis of rolling bearing under time-varying speed conditions

解调 断层(地质) 计算机科学 振动 自编码 方位(导航) 包络线(雷达) 模式识别(心理学) 时频分析 卷积神经网络 信号(编程语言) 理论(学习稳定性) 人工智能 编码器 频带 控制理论(社会学) 人工神经网络 声学 频道(广播) 计算机视觉 机器学习 电信 滤波器(信号处理) 物理 地质学 地震学 操作系统 程序设计语言 雷达 控制(管理) 带宽(计算)
作者
Feiyu Lu,Qingbin Tong,Ziwei Feng,Qingzhu Wan,Guoping an,Yilei Li,Meng Wang,Junci Cao,Tao Guo
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (9): 095022-095022 被引量:13
标识
DOI:10.1088/1361-6501/ac78c5
摘要

Abstract Intelligent fault diagnosis of rolling bearings under non-stationary and time-varying speed conditions is still a challenging task. At the same time, a reasonable explanation for an intelligent diagnosis model based on features is currently lacking. Therefore, we exploit an explainable one-dimensional convolutional neural network (1DCNN) model by combining with the demodulated frequency features of vibration signals and apply it to the fault classification of rolling bearings under time-varying speed conditions. First, the speed signals obtained by the speed encoder were transformed into generalized demodulation operator (GDO). Second, combined with the sensitive frequency band and GDO, the generalized demodulation algorithm was used to extract the frequency features from the amplitude envelope of the vibration signal. Subsequently, the proposed lightweight 1DCNN was trained to classify the frequency features and identify the health states of the rolling bearing. Finally, the local interpretable model-agnostic explanations model was utilized to explain the proposed model based on the features which own weight. It is found that the internal classification mechanism of the lightweight 1DCNN is realized according to the distribution of fault features, which is consistent with the process of human brain analysis. Two kinds of time-varying speed datasets which come from the University of Ottawa and XJTU are tested and verified. The results show that compared with other intelligent fault diagnosis methods, the identification error of the proposed method is lower and the diagnosis stability is better. The average diagnostic accuracy was 96.26% and 99.82%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一应助qzaima采纳,获得10
2秒前
unowhoiam完成签到 ,获得积分10
3秒前
CipherSage应助张三采纳,获得10
3秒前
Xinger发布了新的文献求助10
3秒前
科研通AI5应助时尚灵安采纳,获得10
4秒前
黑马王子完成签到,获得积分10
4秒前
酷波er应助hqwesd采纳,获得10
6秒前
深情安青应助Twilight采纳,获得10
6秒前
7秒前
9秒前
酷波er应助小艾采纳,获得10
9秒前
9秒前
梅卡完成签到 ,获得积分10
10秒前
apckkk完成签到 ,获得积分10
11秒前
豪的花花完成签到,获得积分10
11秒前
坚强大炮完成签到,获得积分10
11秒前
12秒前
ZY发布了新的文献求助10
13秒前
15秒前
Orange应助屠甜甜采纳,获得10
16秒前
QiongYin_123发布了新的文献求助10
16秒前
17秒前
领导范儿应助Lynn采纳,获得10
17秒前
JamesPei应助招财不肥采纳,获得10
19秒前
19秒前
俞跃发布了新的文献求助10
19秒前
小浣熊完成签到,获得积分10
20秒前
kx关注了科研通微信公众号
21秒前
彭于晏应助jinzhen采纳,获得10
22秒前
24秒前
24秒前
优雅友蕊完成签到,获得积分10
27秒前
zho关闭了zho文献求助
28秒前
芊泽。完成签到,获得积分10
28秒前
28秒前
28秒前
28秒前
28秒前
jbzmm完成签到 ,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512282
求助须知:如何正确求助?哪些是违规求助? 3094765
关于积分的说明 9224470
捐赠科研通 2789567
什么是DOI,文献DOI怎么找? 1530758
邀请新用户注册赠送积分活动 711121
科研通“疑难数据库(出版商)”最低求助积分说明 706568