The flourishing development of emerging electromechanical applications has stimulated an urgent demand for ferroelectric ceramics with high piezoelectric properties and broad temperature usage range. However, it remains a challenge to simultaneously obtain good piezoelectricity and reliable temperature stability in lead zirconate titanate (PZT)-based piezoelectric ceramics. To solve this issue, a synergetic strategy was proposed to introduce lead vacancies through niobium doping and construct morphotropic phase boundary (MPB). In this work, Pb0.905Ba0.085(VPb″)0.01[(ZrxTi1-x)0.98Nb0.02]O3 (PBZTN-x) material system was designed. Good comprehensive properties (d33 = 864 pC/N, kp = 84%, TC = 201 °C) and excellent temperature stability (less than 10% variation of electrical properties from 20 °C to 160 °C) were obtained in PBZTN-0.540 ceramics. Good piezoelectricity can be attributed to high extrinsic contribution (domain wall motion) induced by Pb2+ vacancies and the existence of nano-domains emerged at MPB, while excellent temperature stability is mainly attributed to the minimized local stress in the lattice and the stable domain structure.