Altered large‐scale dynamic connectivity patterns in Alzheimer's disease and mild cognitive impairment patients: A machine learning study

默认模式网络 认知 动态功能连接 背景(考古学) 静息状态功能磁共振成像 神经科学 心理学 接收机工作特性 功能连接 阿尔茨海默病 认知功能衰退 疾病 人工智能 痴呆 计算机科学 机器学习 医学 生物 病理 古生物学
作者
Rixing Jing,Pindong Chen,Yongbin Wei,Juanning Si,Yuying Zhou,Dawei Wang,Chengyuan Song,Hongwei Yang,Zengqiang Zhang,Hongxiang Yao,Xiaopeng Kang,Lingzhong Fan,Tong Han,Wen Qin,Bo Zhou,Tianzi Jiang,Jie Lu,Ying Han,Xi Zhang,Bing Liu,Chunshui Yu,Pan Wang,Yong Liu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:44 (9): 3467-3480 被引量:5
标识
DOI:10.1002/hbm.26291
摘要

Abstract Alzheimer's disease (AD) is a common neurodegeneration disease associated with substantial disruptions in the brain network. However, most studies investigated static resting‐state functional connections, while the alteration of dynamic functional connectivity in AD remains largely unknown. This study used group independent component analysis and the sliding‐window method to estimate the subject‐specific dynamic connectivity states in 1704 individuals from three data sets. Informative inherent states were identified by the multivariate pattern classification method, and classifiers were built to distinguish ADs from normal controls (NCs) and to classify mild cognitive impairment (MCI) patients with informative inherent states similar to ADs or not. In addition, MCI subgroups with heterogeneous functional states were examined in the context of different cognition decline trajectories. Five informative states were identified by feature selection, mainly involving functional connectivity belonging to the default mode network and working memory network. The classifiers discriminating AD and NC achieved the mean area under the receiver operating characteristic curve of 0.87 with leave‐one‐site‐out cross‐validation. Alterations in connectivity strength, fluctuation, and inter‐synchronization were found in AD and MCIs. Moreover, individuals with MCI were clustered into two subgroups, which had different degrees of atrophy and different trajectories of cognition decline progression. The present study uncovered the alteration of dynamic functional connectivity in AD and highlighted that the dynamic states could be powerful features to discriminate patients from NCs. Furthermore, it demonstrated that these states help to identify MCIs with faster cognition decline and might contribute to the early prevention of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的傲玉应助小月采纳,获得10
1秒前
nicemice发布了新的文献求助10
1秒前
xtlx完成签到,获得积分10
1秒前
蓝桉完成签到,获得积分10
2秒前
执着的怜寒应助aaaabc采纳,获得20
2秒前
2秒前
花花发布了新的文献求助10
2秒前
万能图书馆应助白华苍松采纳,获得10
3秒前
孔大漂亮完成签到,获得积分10
4秒前
5秒前
打打应助HopeStar采纳,获得10
5秒前
5秒前
科研通AI5应助标致小伙采纳,获得30
5秒前
有风发布了新的文献求助10
5秒前
5秒前
路在脚下完成签到 ,获得积分10
5秒前
bkagyin应助GOODYUE采纳,获得10
6秒前
Jasper应助彩色的蓝天采纳,获得10
6秒前
詹严青发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
郭翔完成签到,获得积分10
7秒前
Yeong发布了新的文献求助10
8秒前
jh完成签到 ,获得积分10
8秒前
syq完成签到,获得积分10
9秒前
sfw完成签到,获得积分10
9秒前
10秒前
光亮面包完成签到 ,获得积分10
10秒前
小猪啵比完成签到 ,获得积分10
10秒前
小智发布了新的文献求助10
10秒前
毛慢慢发布了新的文献求助10
10秒前
lilac应助1234567890采纳,获得10
11秒前
OYE发布了新的文献求助10
11秒前
木木发布了新的文献求助10
12秒前
zhy完成签到,获得积分10
13秒前
13秒前
自由的刺猬完成签到,获得积分20
13秒前
潇洒甜瓜发布了新的文献求助10
14秒前
jessie完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759