Altered large‐scale dynamic connectivity patterns in Alzheimer's disease and mild cognitive impairment patients: A machine learning study

默认模式网络 认知 动态功能连接 背景(考古学) 静息状态功能磁共振成像 神经科学 心理学 接收机工作特性 功能连接 阿尔茨海默病 认知功能衰退 疾病 人工智能 痴呆 计算机科学 机器学习 医学 生物 病理 古生物学
作者
Rixing Jing,Pindong Chen,Yongbin Wei,Juanning Si,Yuying Zhou,Dawei Wang,Chengyuan Song,Hongwei Yang,Zengqiang Zhang,Hongxiang Yao,Xiaopeng Kang,Lingzhong Fan,Tong Han,Wen Qin,Bo Zhou,Tianzi Jiang,Jie Lu,Ying Han,Xi Zhang,Bing Liu,Chunshui Yu,Pan Wang,Yong Liu
出处
期刊:Human Brain Mapping [Wiley]
卷期号:44 (9): 3467-3480 被引量:5
标识
DOI:10.1002/hbm.26291
摘要

Abstract Alzheimer's disease (AD) is a common neurodegeneration disease associated with substantial disruptions in the brain network. However, most studies investigated static resting‐state functional connections, while the alteration of dynamic functional connectivity in AD remains largely unknown. This study used group independent component analysis and the sliding‐window method to estimate the subject‐specific dynamic connectivity states in 1704 individuals from three data sets. Informative inherent states were identified by the multivariate pattern classification method, and classifiers were built to distinguish ADs from normal controls (NCs) and to classify mild cognitive impairment (MCI) patients with informative inherent states similar to ADs or not. In addition, MCI subgroups with heterogeneous functional states were examined in the context of different cognition decline trajectories. Five informative states were identified by feature selection, mainly involving functional connectivity belonging to the default mode network and working memory network. The classifiers discriminating AD and NC achieved the mean area under the receiver operating characteristic curve of 0.87 with leave‐one‐site‐out cross‐validation. Alterations in connectivity strength, fluctuation, and inter‐synchronization were found in AD and MCIs. Moreover, individuals with MCI were clustered into two subgroups, which had different degrees of atrophy and different trajectories of cognition decline progression. The present study uncovered the alteration of dynamic functional connectivity in AD and highlighted that the dynamic states could be powerful features to discriminate patients from NCs. Furthermore, it demonstrated that these states help to identify MCIs with faster cognition decline and might contribute to the early prevention of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助酷炫的语梦采纳,获得10
刚刚
刚刚
XMFM完成签到 ,获得积分10
1秒前
张北北应助车祥采纳,获得10
5秒前
Owen应助雪芜采纳,获得10
5秒前
彭于晏应助翾喾鷇采纳,获得10
5秒前
调研昵称发布了新的文献求助10
6秒前
杨乐多完成签到,获得积分10
8秒前
lou发布了新的文献求助10
9秒前
火星上冥茗完成签到,获得积分10
11秒前
爆米花应助xingyuwuhen007采纳,获得10
11秒前
FAPI完成签到,获得积分20
11秒前
12秒前
研友_VZG7GZ应助晓晓来了采纳,获得10
13秒前
15秒前
柯南完成签到,获得积分10
17秒前
野性的尔琴完成签到,获得积分10
17秒前
紫琉花雨完成签到 ,获得积分10
18秒前
19秒前
我是老大应助sandy采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
阳光明媚完成签到,获得积分10
19秒前
田様应助科研通管家采纳,获得50
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
科目三应助lou采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
田様应助科研通管家采纳,获得10
20秒前
OMR123发布了新的文献求助10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
20秒前
晓晓来了发布了新的文献求助10
21秒前
英姑应助tommy采纳,获得10
21秒前
三个哈卡发布了新的文献求助10
24秒前
25秒前
傲慢与偏见zz应助2333采纳,获得10
26秒前
tian完成签到,获得积分10
28秒前
29秒前
年三月完成签到 ,获得积分10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236154
求助须知:如何正确求助?哪些是违规求助? 2881895
关于积分的说明 8224139
捐赠科研通 2549869
什么是DOI,文献DOI怎么找? 1378681
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623884