Deep learning-based middle cerebral artery blood flow abnormality detection using flow velocity waveform derived from transcranial Doppler ultrasound

经颅多普勒 波形 大脑中动脉 计算机科学 深度学习 人工智能 模式识别(心理学) 超声波 人工神经网络 多普勒效应 血流 接收机工作特性 医学 放射科 心脏病学 机器学习 缺血 物理 天文 雷达 电信
作者
Kanchon Kanti Podder,Muhammad E. H. Chowdhury,Somaya Al-Máadeed,Naima Nasrin Nisha,Sakib Mahmud,Fatema Hamadelneil,Taif Almkhlef,Hind Aljofairi,Adam Mushtak,Amith Khandakar,Susu M. Zughaier
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104882-104882 被引量:9
标识
DOI:10.1016/j.bspc.2023.104882
摘要

Since the brain is unlike any other organ in that it cannot store energy and has a high metabolic demand, constant blood flow is essential for healthy brain function. The maximum flow velocity waveform that is produced by transcranial doppler echo ultrasonography has different qualities for a healthy subject and a critically ill patient with conditions such as intraparenchymal or subarachnoid hemorrhage, hydrocephalus, or traumatic brain injury. Depending on the degree of the injury, the symptoms of traumatic brain damage can present themselves right away or not until days or weeks later. To aid in the early and accurate detection of patients with severe brain conditions, a classification system is proposed that can distinguish between healthy control and patient utilizing the maximum flow velocity waveform derived from Transcranial doppler ultrasound. In this research, we manually labelled the data to remove mediocre and corrupted signals and pre-processed low-quality signals into high-quality ones using a Cycle Generative Adversarial Network (CycleGAN). This study proposes a two-stream deep learning model, DopplerNet2+, based on a Self-organized Operational Neural Network (Self-ONN), which achieves an overall accuracy, precision, recall, sensitivity, f1 score, and specificity of 99.45%, 99.45%, 99.45%, and 99.37% for the classification issue. DopplerNet2+ has a better area under the curve (AUC) of 1.00 and a better Kolmogorov-Smirnov (KS) statistic of 0.996 at the 0.812 thresholds than 11 other Self-ONN models trained with different inputs. The results show that the proposed models can successfully carry out the targeted classification task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健康的花生完成签到,获得积分20
刚刚
liuyiduo发布了新的文献求助20
1秒前
1秒前
momo发布了新的文献求助10
2秒前
CodeCraft应助健康的花生采纳,获得10
3秒前
Lucas应助qty采纳,获得30
3秒前
4秒前
4秒前
6秒前
8秒前
8秒前
8秒前
易安发布了新的文献求助10
8秒前
orixero应助晓晓采纳,获得10
8秒前
大林发布了新的文献求助10
9秒前
超级姜片完成签到,获得积分0
10秒前
hh发布了新的文献求助10
10秒前
斯文稚晴发布了新的文献求助10
11秒前
13秒前
qty发布了新的文献求助30
14秒前
14秒前
慕青应助调皮的毛豆采纳,获得10
16秒前
honghong完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
我是老大应助夜阑卧听采纳,获得10
19秒前
20秒前
爆米花应助Khalil采纳,获得10
21秒前
21秒前
林林发布了新的文献求助10
22秒前
23秒前
晓晓发布了新的文献求助10
24秒前
25秒前
江峰发布了新的文献求助10
25秒前
DENIM完成签到,获得积分10
27秒前
qty完成签到,获得积分10
28秒前
mingkle发布了新的文献求助30
28秒前
prtrichor599发布了新的文献求助30
29秒前
xiaoma发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150244
求助须知:如何正确求助?哪些是违规求助? 2801374
关于积分的说明 7844178
捐赠科研通 2458888
什么是DOI,文献DOI怎么找? 1308710
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721