Correcting class imbalances with self-training for improved universal lesion detection and tagging

班级(哲学) 计算机科学 人工智能 语音识别
作者
Alexander Shieh,Tejas Sudharshan Mathai,Jianfei Liu,Angshuman Paul,Ronald M. Summers
标识
DOI:10.1117/12.2655267
摘要

Universal lesion detection and tagging (ULDT) in CT studies is critical for tumor burden assessment and tracking the progression of lesion status (growth/shrinkage) over time. However, a lack of fully annotated data hinders the development of effective ULDT approaches. Prior work used the DeepLesion dataset (4,427 patients, 10,594 studies, 32,120 CT slices, 32,735 lesions, 8 body part labels) for algorithmic development, but this dataset is not completely annotated and contains class imbalances. To address these issues, in this work, we developed a self-training pipeline for ULDT. A VFNet model was trained on a limited 11.5% subset of DeepLesion (bounding boxes + tags) to detect and classify lesions in CT studies. Then, it identified and incorporated novel lesion candidates from a larger unseen data subset into its training set, and self-trained itself over multiple rounds. Multiple self-training experiments were conducted with different threshold policies to select predicted lesions with higher quality and cover the class imbalances. We discovered that direct self-training improved the sensitivities of over-represented lesion classes at the expense of under-represented classes. However, upsampling the lesions mined during self-training along with a variable threshold policy yielded a 6.5% increase in sensitivity at 4 FP in contrast to self-training without class balancing (72% vs 78.5%) and a 11.7% increase compared to the same self-training policy without upsampling (66.8% vs 78.5%). Furthermore, we show that our results either improved or maintained the sensitivity at 4FP for all 8 lesion classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
揍鱼发布了新的文献求助10
刚刚
Assmpsit发布了新的文献求助10
刚刚
FashionBoy应助一树春风采纳,获得10
1秒前
2秒前
3秒前
灯火葳蕤发布了新的文献求助30
4秒前
传奇3应助务实的听筠采纳,获得10
4秒前
一一完成签到,获得积分10
4秒前
5秒前
LI完成签到 ,获得积分10
5秒前
852应助云澈采纳,获得10
6秒前
冬柳完成签到,获得积分10
6秒前
感谢大佬发布了新的文献求助10
7秒前
7秒前
小新小新关注了科研通微信公众号
7秒前
朱朱发布了新的文献求助10
8秒前
一一发布了新的文献求助10
10秒前
有人应助lili采纳,获得10
10秒前
姚奋斗发布了新的文献求助10
11秒前
Owen应助aaggaga采纳,获得10
11秒前
13秒前
14秒前
无聊的豌豆完成签到,获得积分10
14秒前
一只狗东西完成签到,获得积分10
14秒前
狗剩完成签到,获得积分10
14秒前
16秒前
18秒前
GQ发布了新的文献求助10
18秒前
冬柳发布了新的文献求助10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
yuant发布了新的文献求助10
20秒前
云澈发布了新的文献求助10
21秒前
狗剩发布了新的文献求助10
21秒前
隐形曼青应助无聊的豌豆采纳,获得10
22秒前
张笑笑发布了新的文献求助10
23秒前
ynscw应助白华苍松采纳,获得20
24秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291