Correcting class imbalances with self-training for improved universal lesion detection and tagging

班级(哲学) 计算机科学 人工智能 语音识别
作者
Alexander Shieh,Tejas Sudharshan Mathai,Jianfei Liu,Angshuman Paul,Ronald M. Summers
标识
DOI:10.1117/12.2655267
摘要

Universal lesion detection and tagging (ULDT) in CT studies is critical for tumor burden assessment and tracking the progression of lesion status (growth/shrinkage) over time. However, a lack of fully annotated data hinders the development of effective ULDT approaches. Prior work used the DeepLesion dataset (4,427 patients, 10,594 studies, 32,120 CT slices, 32,735 lesions, 8 body part labels) for algorithmic development, but this dataset is not completely annotated and contains class imbalances. To address these issues, in this work, we developed a self-training pipeline for ULDT. A VFNet model was trained on a limited 11.5% subset of DeepLesion (bounding boxes + tags) to detect and classify lesions in CT studies. Then, it identified and incorporated novel lesion candidates from a larger unseen data subset into its training set, and self-trained itself over multiple rounds. Multiple self-training experiments were conducted with different threshold policies to select predicted lesions with higher quality and cover the class imbalances. We discovered that direct self-training improved the sensitivities of over-represented lesion classes at the expense of under-represented classes. However, upsampling the lesions mined during self-training along with a variable threshold policy yielded a 6.5% increase in sensitivity at 4 FP in contrast to self-training without class balancing (72% vs 78.5%) and a 11.7% increase compared to the same self-training policy without upsampling (66.8% vs 78.5%). Furthermore, we show that our results either improved or maintained the sensitivity at 4FP for all 8 lesion classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助50
1秒前
悦耳的依风完成签到,获得积分20
1秒前
梁十八发布了新的文献求助10
2秒前
柠檬汽水发布了新的文献求助10
2秒前
龙弟弟发布了新的文献求助10
2秒前
RN发布了新的文献求助10
2秒前
霜之哀伤完成签到,获得积分10
3秒前
黄菠萝发布了新的文献求助10
3秒前
FIN应助琪玛苏采纳,获得200
4秒前
明理映真发布了新的文献求助10
6秒前
6秒前
螳螂和煤气罐完成签到 ,获得积分10
6秒前
wfwl完成签到,获得积分10
6秒前
zz发布了新的文献求助10
7秒前
追寻冰淇淋应助123采纳,获得50
7秒前
8秒前
ding应助柠檬汽水采纳,获得10
9秒前
zpj完成签到 ,获得积分10
10秒前
10秒前
Dr.Tang发布了新的文献求助10
10秒前
11秒前
忧伤的皮皮虾完成签到,获得积分10
12秒前
zzzkyt发布了新的文献求助50
12秒前
12秒前
Wanfeng应助llljiaozi采纳,获得50
13秒前
可爱的凛发布了新的文献求助10
15秒前
16秒前
Han发布了新的文献求助10
16秒前
零知识发布了新的文献求助10
16秒前
孙微祥完成签到,获得积分10
16秒前
17秒前
结实的迎梅完成签到,获得积分20
17秒前
18秒前
chenqingyu完成签到,获得积分10
18秒前
18秒前
火火火完成签到,获得积分10
19秒前
21秒前
樊振南完成签到 ,获得积分10
21秒前
苏雅霏发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859