Correcting class imbalances with self-training for improved universal lesion detection and tagging

班级(哲学) 计算机科学 人工智能 语音识别
作者
Alexander Shieh,Tejas Sudharshan Mathai,Jianfei Liu,Angshuman Paul,Ronald M. Summers
标识
DOI:10.1117/12.2655267
摘要

Universal lesion detection and tagging (ULDT) in CT studies is critical for tumor burden assessment and tracking the progression of lesion status (growth/shrinkage) over time. However, a lack of fully annotated data hinders the development of effective ULDT approaches. Prior work used the DeepLesion dataset (4,427 patients, 10,594 studies, 32,120 CT slices, 32,735 lesions, 8 body part labels) for algorithmic development, but this dataset is not completely annotated and contains class imbalances. To address these issues, in this work, we developed a self-training pipeline for ULDT. A VFNet model was trained on a limited 11.5% subset of DeepLesion (bounding boxes + tags) to detect and classify lesions in CT studies. Then, it identified and incorporated novel lesion candidates from a larger unseen data subset into its training set, and self-trained itself over multiple rounds. Multiple self-training experiments were conducted with different threshold policies to select predicted lesions with higher quality and cover the class imbalances. We discovered that direct self-training improved the sensitivities of over-represented lesion classes at the expense of under-represented classes. However, upsampling the lesions mined during self-training along with a variable threshold policy yielded a 6.5% increase in sensitivity at 4 FP in contrast to self-training without class balancing (72% vs 78.5%) and a 11.7% increase compared to the same self-training policy without upsampling (66.8% vs 78.5%). Furthermore, we show that our results either improved or maintained the sensitivity at 4FP for all 8 lesion classes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助lixuebin采纳,获得10
刚刚
大模型应助kaiser采纳,获得10
刚刚
刚刚
刚刚
1秒前
深藏blue完成签到,获得积分10
1秒前
俭朴老五完成签到,获得积分10
2秒前
张流筝完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
年轻花卷完成签到 ,获得积分10
4秒前
Sun发布了新的文献求助10
5秒前
5秒前
5秒前
2010发布了新的文献求助10
5秒前
小张要发论文完成签到,获得积分10
5秒前
内向尔安完成签到,获得积分10
5秒前
linhua发布了新的文献求助10
5秒前
现代水卉完成签到,获得积分10
5秒前
俭朴老五发布了新的文献求助10
5秒前
周轩完成签到,获得积分10
6秒前
搜集达人应助君无邪采纳,获得10
6秒前
caoll发布了新的文献求助10
6秒前
NexusExplorer应助高子懿采纳,获得10
6秒前
qaplay完成签到 ,获得积分0
6秒前
7秒前
好好应助尹二采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Hayworth完成签到,获得积分10
8秒前
顺心夜阑发布了新的文献求助10
8秒前
刘123完成签到 ,获得积分10
8秒前
9秒前
Lucas应助wow采纳,获得10
9秒前
xiao完成签到,获得积分10
9秒前
欢喜蛋挞发布了新的文献求助10
10秒前
王鹏发布了新的文献求助10
10秒前
yangchao1289发布了新的文献求助10
10秒前
打打应助Sun采纳,获得10
10秒前
Colo完成签到,获得积分10
10秒前
小马甲应助LILILILILI采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515