Correcting class imbalances with self-training for improved universal lesion detection and tagging

班级(哲学) 计算机科学 人工智能 语音识别
作者
Alexander Shieh,Tejas Sudharshan Mathai,Jianfei Liu,Angshuman Paul,Ronald M. Summers
标识
DOI:10.1117/12.2655267
摘要

Universal lesion detection and tagging (ULDT) in CT studies is critical for tumor burden assessment and tracking the progression of lesion status (growth/shrinkage) over time. However, a lack of fully annotated data hinders the development of effective ULDT approaches. Prior work used the DeepLesion dataset (4,427 patients, 10,594 studies, 32,120 CT slices, 32,735 lesions, 8 body part labels) for algorithmic development, but this dataset is not completely annotated and contains class imbalances. To address these issues, in this work, we developed a self-training pipeline for ULDT. A VFNet model was trained on a limited 11.5% subset of DeepLesion (bounding boxes + tags) to detect and classify lesions in CT studies. Then, it identified and incorporated novel lesion candidates from a larger unseen data subset into its training set, and self-trained itself over multiple rounds. Multiple self-training experiments were conducted with different threshold policies to select predicted lesions with higher quality and cover the class imbalances. We discovered that direct self-training improved the sensitivities of over-represented lesion classes at the expense of under-represented classes. However, upsampling the lesions mined during self-training along with a variable threshold policy yielded a 6.5% increase in sensitivity at 4 FP in contrast to self-training without class balancing (72% vs 78.5%) and a 11.7% increase compared to the same self-training policy without upsampling (66.8% vs 78.5%). Furthermore, we show that our results either improved or maintained the sensitivity at 4FP for all 8 lesion classes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vanessa发布了新的文献求助10
1秒前
田様应助鲤鱼越越采纳,获得10
3秒前
白玫瑰完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
wen发布了新的文献求助10
5秒前
5秒前
6秒前
percy完成签到 ,获得积分10
6秒前
MNing发布了新的文献求助10
6秒前
芊芊完成签到 ,获得积分10
6秒前
7秒前
7秒前
Jasper应助莫佳龙采纳,获得10
8秒前
小树完成签到 ,获得积分10
8秒前
yang发布了新的文献求助10
9秒前
CTCTCT6完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助30
9秒前
一二完成签到,获得积分10
9秒前
10秒前
of发布了新的文献求助10
10秒前
11秒前
诗诗发布了新的文献求助40
12秒前
海拾月发布了新的文献求助30
14秒前
一二发布了新的文献求助10
14秒前
15秒前
流水完成签到,获得积分10
15秒前
leahhan关注了科研通微信公众号
16秒前
17秒前
测量幽冥完成签到 ,获得积分10
17秒前
wen关闭了wen文献求助
17秒前
MNing完成签到,获得积分20
17秒前
QQ完成签到,获得积分10
18秒前
小青椒应助fatcat采纳,获得30
18秒前
19秒前
20秒前
夜已深完成签到,获得积分10
21秒前
莫佳龙完成签到,获得积分10
21秒前
今后应助shi采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5140956
求助须知:如何正确求助?哪些是违规求助? 4339406
关于积分的说明 13515190
捐赠科研通 4179052
什么是DOI,文献DOI怎么找? 2291550
邀请新用户注册赠送积分活动 1292241
关于科研通互助平台的介绍 1234614