清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Correcting class imbalances with self-training for improved universal lesion detection and tagging

班级(哲学) 计算机科学 人工智能 语音识别
作者
Alexander Shieh,Tejas Sudharshan Mathai,Jianfei Liu,Angshuman Paul,Ronald M. Summers
标识
DOI:10.1117/12.2655267
摘要

Universal lesion detection and tagging (ULDT) in CT studies is critical for tumor burden assessment and tracking the progression of lesion status (growth/shrinkage) over time. However, a lack of fully annotated data hinders the development of effective ULDT approaches. Prior work used the DeepLesion dataset (4,427 patients, 10,594 studies, 32,120 CT slices, 32,735 lesions, 8 body part labels) for algorithmic development, but this dataset is not completely annotated and contains class imbalances. To address these issues, in this work, we developed a self-training pipeline for ULDT. A VFNet model was trained on a limited 11.5% subset of DeepLesion (bounding boxes + tags) to detect and classify lesions in CT studies. Then, it identified and incorporated novel lesion candidates from a larger unseen data subset into its training set, and self-trained itself over multiple rounds. Multiple self-training experiments were conducted with different threshold policies to select predicted lesions with higher quality and cover the class imbalances. We discovered that direct self-training improved the sensitivities of over-represented lesion classes at the expense of under-represented classes. However, upsampling the lesions mined during self-training along with a variable threshold policy yielded a 6.5% increase in sensitivity at 4 FP in contrast to self-training without class balancing (72% vs 78.5%) and a 11.7% increase compared to the same self-training policy without upsampling (66.8% vs 78.5%). Furthermore, we show that our results either improved or maintained the sensitivity at 4FP for all 8 lesion classes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的慕卉完成签到 ,获得积分10
29秒前
L2951完成签到 ,获得积分10
33秒前
36秒前
achulw完成签到,获得积分10
1分钟前
nojego完成签到,获得积分10
2分钟前
自觉香彤完成签到 ,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
3分钟前
freyaaaaa应助科研通管家采纳,获得50
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
板栗小狗发布了新的文献求助10
4分钟前
板栗小狗完成签到,获得积分10
4分钟前
5分钟前
一叶知秋应助孤巷的猫采纳,获得10
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
ZYP应助科研通管家采纳,获得20
5分钟前
5分钟前
孤巷的猫发布了新的文献求助10
6分钟前
孤巷的猫完成签到,获得积分10
6分钟前
身处人海完成签到,获得积分10
6分钟前
Siren发布了新的文献求助10
6分钟前
tt完成签到,获得积分10
6分钟前
紫荆完成签到 ,获得积分10
6分钟前
华仔应助volunteer采纳,获得10
6分钟前
volunteer完成签到,获得积分10
7分钟前
7分钟前
volunteer发布了新的文献求助10
7分钟前
7分钟前
奈思完成签到 ,获得积分10
7分钟前
ZYP应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
碗碗豆喵完成签到 ,获得积分10
8分钟前
9分钟前
冷傲半邪给冷傲半邪的求助进行了留言
9分钟前
勤劳落雁发布了新的文献求助30
9分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516107
求助须知:如何正确求助?哪些是违规求助? 4609224
关于积分的说明 14514619
捐赠科研通 4545775
什么是DOI,文献DOI怎么找? 2490916
邀请新用户注册赠送积分活动 1472722
关于科研通互助平台的介绍 1444518