Cross-level Feature Aggregation Network for Polyp Segmentation

分割 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 边界(拓扑) 图像分割 尺度空间分割 基于分割的对象分类 数学 语言学 哲学 数学分析
作者
Tao Zhou,Yi Zhou,Kelei He,Chen Gong,Jian Yang,Huazhu Fu,Dinggang Shen
出处
期刊:Pattern Recognition [Elsevier]
卷期号:140: 109555-109555 被引量:170
标识
DOI:10.1016/j.patcog.2023.109555
摘要

Accurate segmentation of polyps from colonoscopy images plays a critical role in the diagnosis and cure of colorectal cancer. Although effectiveness has been achieved in the field of polyp segmentation, there are still several challenges. Polyps often have a diversity of size and shape and have no sharp boundary between polyps and their surrounding. To address these challenges, we propose a novel Cross-level Feature Aggregation Network (CFA-Net) for polyp segmentation. Specifically, we first propose a boundary prediction network to generate boundary-aware features, which are incorporated into the segmentation network using a layer-wise strategy. In particular, we design a two-stream structure based segmentation network, to exploit hierarchical semantic information from cross-level features. Furthermore, a Cross-level Feature Fusion (CFF) module is proposed to integrate the adjacent features from different levels, which can characterize the cross-level and multi-scale information to handle scale variations of polyps. Further, a Boundary Aggregated Module (BAM) is proposed to incorporate boundary information into the segmentation network, which enhances these hierarchical features to generate finer segmentation maps. Quantitative and qualitative experiments on five public datasets demonstrate the effectiveness of our CFA-Net against other state-of-the-art polyp segmentation methods. The source code and segmentation maps will be released at https://github.com/taozh2017/CFANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨乐发布了新的文献求助10
2秒前
suntee发布了新的文献求助10
2秒前
4秒前
33333完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
KKKK发布了新的文献求助10
5秒前
6秒前
木易木土完成签到,获得积分10
7秒前
7秒前
天天快乐应助Fan采纳,获得10
7秒前
yu关闭了yu文献求助
8秒前
Jasper应助ychen采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
十月完成签到,获得积分10
12秒前
能干巨人应助科研通管家采纳,获得10
12秒前
aaa完成签到,获得积分10
12秒前
李健应助科研通管家采纳,获得10
12秒前
12秒前
pluto应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
一剑温柔发布了新的文献求助10
14秒前
15秒前
大模型应助li17195采纳,获得10
15秒前
16秒前
16秒前
orixero应助标致的甜瓜采纳,获得10
17秒前
雨乐完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704