Cross-level Feature Aggregation Network for Polyp Segmentation

分割 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 边界(拓扑) 图像分割 尺度空间分割 基于分割的对象分类 数学 语言学 数学分析 哲学
作者
Tao Zhou,Yi Zhou,Kelei He,Chen Gong,Jian Yang,Huazhu Fu,Dinggang Shen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:140: 109555-109555 被引量:115
标识
DOI:10.1016/j.patcog.2023.109555
摘要

Accurate segmentation of polyps from colonoscopy images plays a critical role in the diagnosis and cure of colorectal cancer. Although effectiveness has been achieved in the field of polyp segmentation, there are still several challenges. Polyps often have a diversity of size and shape and have no sharp boundary between polyps and their surrounding. To address these challenges, we propose a novel Cross-level Feature Aggregation Network (CFA-Net) for polyp segmentation. Specifically, we first propose a boundary prediction network to generate boundary-aware features, which are incorporated into the segmentation network using a layer-wise strategy. In particular, we design a two-stream structure based segmentation network, to exploit hierarchical semantic information from cross-level features. Furthermore, a Cross-level Feature Fusion (CFF) module is proposed to integrate the adjacent features from different levels, which can characterize the cross-level and multi-scale information to handle scale variations of polyps. Further, a Boundary Aggregated Module (BAM) is proposed to incorporate boundary information into the segmentation network, which enhances these hierarchical features to generate finer segmentation maps. Quantitative and qualitative experiments on five public datasets demonstrate the effectiveness of our CFA-Net against other state-of-the-art polyp segmentation methods. The source code and segmentation maps will be released at https://github.com/taozh2017/CFANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
洋芋擦擦完成签到,获得积分10
2秒前
汉堡包应助霸气幼荷采纳,获得10
3秒前
4秒前
蒙扎发布了新的文献求助10
4秒前
化学之星发布了新的文献求助10
4秒前
胖墩儿驾到完成签到,获得积分10
5秒前
赘婿应助骆十八采纳,获得10
5秒前
sherrinford完成签到,获得积分10
6秒前
6秒前
斯文败类应助榴下晨光采纳,获得10
7秒前
mochi发布了新的文献求助10
8秒前
222发布了新的文献求助10
9秒前
稻草人发布了新的文献求助10
9秒前
智慧爷爷发布了新的文献求助10
9秒前
舒服的寻琴应助Abiy采纳,获得10
10秒前
依克完成签到,获得积分10
15秒前
17秒前
狂野篮球完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
19秒前
香蕉觅云应助王子娇采纳,获得10
20秒前
lth完成签到 ,获得积分10
20秒前
蛋挞发布了新的文献求助10
22秒前
今后应助十药九茯苓采纳,获得10
22秒前
Tipton发布了新的文献求助10
23秒前
榴下晨光发布了新的文献求助10
23秒前
斯文听寒完成签到 ,获得积分10
24秒前
一缕阳光完成签到,获得积分10
24秒前
25秒前
LQ发布了新的文献求助10
25秒前
kobe发布了新的文献求助10
25秒前
oia完成签到,获得积分20
26秒前
28秒前
吕lvlvlvlvlv完成签到 ,获得积分10
28秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142