DCFusion: A Dual-Frequency Cross-Enhanced Fusion Network for Infrared and Visible Image Fusion

图像融合 鉴别器 人工智能 融合 计算机科学 计算机视觉 特征(语言学) 斑点检测 图像(数学) 模式识别(心理学) 图像处理 探测器 边缘检测 电信 语言学 哲学
作者
Dan Wu,Mina Han,Yang Yang,Shan Zhao,Yujing Rao,Hao Li,Lin Xing,Chengjiang Zhou,Haicheng Bai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:16
标识
DOI:10.1109/tim.2023.3267380
摘要

The visible image contains many high-frequency components that provide texture details with high spatial resolution and definition consistent with human visual perception, but it is easily affected by external factors such as light, weather, and obstructions. On the other hand, the infrared image is a radiation image whose contrast is determined by the temperature difference between the target and the background, and is not easily affected by external conditions. Integrating complementary information from both image types into one image is therefore very useful. In our paper, we propose a dual-frequency cross-enhanced fusion network called DCFusion for infrared and visible image fusion. We design a frequency decomposition module and a frequency enhancement module based on Laplacian of Gaussian for feature decomposition and enhancement, respectively. We then build a dual-frequency cross-enhanced fusion generator network based on these two modules to achieve enhanced fusion. We also use the sum of visible and infrared discriminator and the visible discriminator to balance our fusion results, replacing the traditional single visible discriminator. Our method is an end-to-end model, avoiding the manual design of complex fusion rules like traditional methods. Compared with existing advanced fusion algorithms, our method outperforms most of them in qualitative comparison, quantitative comparison, and target detection accuracy. Finally, the experiment proves that our method can effectively enhance the fusion of the target scene even in harsh environments such as complex lighting, low illumination, and smoke scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Jackson_Cai采纳,获得10
1秒前
领导范儿应助zhaosh采纳,获得10
1秒前
1秒前
浮游应助成就山菡采纳,获得10
1秒前
2秒前
大胆峻熙完成签到,获得积分20
3秒前
yyuu发布了新的文献求助10
4秒前
JJ发布了新的文献求助30
6秒前
6秒前
Kirin完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
hahaer完成签到,获得积分10
7秒前
7秒前
万能图书馆应助樊珩采纳,获得10
8秒前
lyon完成签到,获得积分10
9秒前
幽默鱼完成签到,获得积分10
9秒前
nini发布了新的文献求助10
9秒前
SciGPT应助hahaer采纳,获得10
11秒前
11秒前
12秒前
虚幻采枫发布了新的文献求助10
13秒前
13秒前
夏天的风完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
天天快乐应助lin采纳,获得10
15秒前
科研通AI2S应助ahxb采纳,获得10
15秒前
猫猫叽丫丫完成签到,获得积分10
16秒前
嗯嗯完成签到 ,获得积分10
16秒前
小蘑菇应助樊珩采纳,获得10
17秒前
17秒前
hymmloveGD发布了新的文献求助10
18秒前
李美兰发布了新的文献求助10
19秒前
不起发布了新的文献求助10
19秒前
Apei完成签到,获得积分10
19秒前
BrillSpikes完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282