DCFusion: A Dual-Frequency Cross-Enhanced Fusion Network for Infrared and Visible Image Fusion

图像融合 鉴别器 人工智能 融合 计算机科学 计算机视觉 特征(语言学) 斑点检测 图像(数学) 模式识别(心理学) 图像处理 探测器 边缘检测 电信 语言学 哲学
作者
Dan Wu,Mina Han,Yang Yang,Shan Zhao,Yujing Rao,Hao Li,Lin Xing,Chengjiang Zhou,Haicheng Bai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:16
标识
DOI:10.1109/tim.2023.3267380
摘要

The visible image contains many high-frequency components that provide texture details with high spatial resolution and definition consistent with human visual perception, but it is easily affected by external factors such as light, weather, and obstructions. On the other hand, the infrared image is a radiation image whose contrast is determined by the temperature difference between the target and the background, and is not easily affected by external conditions. Integrating complementary information from both image types into one image is therefore very useful. In our paper, we propose a dual-frequency cross-enhanced fusion network called DCFusion for infrared and visible image fusion. We design a frequency decomposition module and a frequency enhancement module based on Laplacian of Gaussian for feature decomposition and enhancement, respectively. We then build a dual-frequency cross-enhanced fusion generator network based on these two modules to achieve enhanced fusion. We also use the sum of visible and infrared discriminator and the visible discriminator to balance our fusion results, replacing the traditional single visible discriminator. Our method is an end-to-end model, avoiding the manual design of complex fusion rules like traditional methods. Compared with existing advanced fusion algorithms, our method outperforms most of them in qualitative comparison, quantitative comparison, and target detection accuracy. Finally, the experiment proves that our method can effectively enhance the fusion of the target scene even in harsh environments such as complex lighting, low illumination, and smoke scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sheryl发布了新的文献求助10
刚刚
1111应助mdbbs2021采纳,获得10
刚刚
刚刚
haha完成签到,获得积分10
刚刚
刚刚
1秒前
小马甲应助赫赫采纳,获得10
1秒前
1秒前
桐桐应助semigreen采纳,获得10
1秒前
1秒前
郭娅楠发布了新的文献求助10
2秒前
阿龙完成签到,获得积分10
2秒前
陈文文发布了新的文献求助10
2秒前
情怀应助顺利的语山采纳,获得10
3秒前
3秒前
张张发布了新的文献求助10
3秒前
七七八八发布了新的文献求助10
3秒前
姚夏发布了新的文献求助10
3秒前
兴奋的以蓝完成签到,获得积分10
4秒前
Silhouette完成签到,获得积分10
4秒前
烟花应助lizy采纳,获得10
4秒前
4秒前
李健的粉丝团团长应助haha采纳,获得10
5秒前
nnl发布了新的文献求助10
5秒前
小杜完成签到,获得积分10
5秒前
6秒前
jomunmi完成签到 ,获得积分10
6秒前
6秒前
yyfdqms完成签到,获得积分10
6秒前
6秒前
明期完成签到,获得积分20
6秒前
7秒前
7秒前
璀璨关注了科研通微信公众号
7秒前
蓝兰发布了新的文献求助10
7秒前
7秒前
Hey发布了新的文献求助10
8秒前
小龙人发布了新的文献求助10
8秒前
9秒前
魏嘉轩发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577106
求助须知:如何正确求助?哪些是违规求助? 3996300
关于积分的说明 12372082
捐赠科研通 3670338
什么是DOI,文献DOI怎么找? 2022766
邀请新用户注册赠送积分活动 1056873
科研通“疑难数据库(出版商)”最低求助积分说明 944022