亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DCFusion: A Dual-Frequency Cross-Enhanced Fusion Network for Infrared and Visible Image Fusion

图像融合 鉴别器 人工智能 融合 计算机科学 计算机视觉 特征(语言学) 斑点检测 图像(数学) 模式识别(心理学) 图像处理 探测器 边缘检测 电信 语言学 哲学
作者
Dan Wu,Mina Han,Yang Yang,Shan Zhao,Yujing Rao,Hao Li,Lin Xing,Chengjiang Zhou,Haicheng Bai
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:25
标识
DOI:10.1109/tim.2023.3267380
摘要

The visible image contains many high-frequency components that provide texture details with high spatial resolution and definition consistent with human visual perception, but it is easily affected by external factors such as light, weather, and obstructions. On the other hand, the infrared image is a radiation image whose contrast is determined by the temperature difference between the target and the background, and is not easily affected by external conditions. Integrating complementary information from both image types into one image is therefore very useful. In our paper, we propose a dual-frequency cross-enhanced fusion network called DCFusion for infrared and visible image fusion. We design a frequency decomposition module and a frequency enhancement module based on Laplacian of Gaussian for feature decomposition and enhancement, respectively. We then build a dual-frequency cross-enhanced fusion generator network based on these two modules to achieve enhanced fusion. We also use the sum of visible and infrared discriminator and the visible discriminator to balance our fusion results, replacing the traditional single visible discriminator. Our method is an end-to-end model, avoiding the manual design of complex fusion rules like traditional methods. Compared with existing advanced fusion algorithms, our method outperforms most of them in qualitative comparison, quantitative comparison, and target detection accuracy. Finally, the experiment proves that our method can effectively enhance the fusion of the target scene even in harsh environments such as complex lighting, low illumination, and smoke scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐礼祥完成签到,获得积分10
刚刚
2秒前
烊烊完成签到 ,获得积分10
5秒前
luckzzz发布了新的文献求助10
9秒前
李磊完成签到,获得积分10
13秒前
luckzzz完成签到,获得积分10
20秒前
55秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
慕青应助安详的向露采纳,获得10
1分钟前
粗心的谷槐完成签到,获得积分10
1分钟前
1分钟前
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
2分钟前
一只不受管束的小狸Miao完成签到 ,获得积分10
2分钟前
2分钟前
万能图书馆应助YIFCCC采纳,获得10
2分钟前
安详的向露完成签到,获得积分10
2分钟前
2分钟前
月军完成签到,获得积分10
3分钟前
3分钟前
以七完成签到 ,获得积分10
3分钟前
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
4分钟前
xxxhhh发布了新的文献求助10
4分钟前
星辰大海应助xxxhhh采纳,获得10
4分钟前
可靠书白完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
00001z完成签到,获得积分10
5分钟前
5分钟前
5分钟前
xxxhhh发布了新的文献求助10
5分钟前
xm完成签到 ,获得积分10
5分钟前
5分钟前
明月清风完成签到,获得积分10
6分钟前
情怀应助温暖砖头采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529104
求助须知:如何正确求助?哪些是违规求助? 4618325
关于积分的说明 14562502
捐赠科研通 4557288
什么是DOI,文献DOI怎么找? 2497450
邀请新用户注册赠送积分活动 1477685
关于科研通互助平台的介绍 1449056