Identification of novel prognostic indicators for oral squamous cell carcinoma based on proteomics and metabolomics

肿瘤科 比例危险模型 内科学 医学 基底细胞 基因 免疫系统 蛋白质组学 癌症研究 生物信息学 生物 免疫学 生物化学
作者
Zhitao Yao,Wei An,Maimaitituxun Tuerdi,Jin Zhao
出处
期刊:Translational Oncology [Elsevier]
卷期号:33: 101672-101672 被引量:2
标识
DOI:10.1016/j.tranon.2023.101672
摘要

The low 5-year survival rate of oral squamous cell carcinoma (OSCC) suggests that new prognostic indicators need to be identified to aid the clinical management of patients.Saliva samples from OSCC patients and healthy controls were collected for proteomic and metabolomic sequencing. Gene expressed profiling was downloaded from TCGA and GEO databases. After the differential analysis, proteins with a significant impact on the prognosis of OSCC patients were screened. Correlation analysis was performed with metabolites and core proteins were identified. Cox regression analysis was utilized to stratify OSCC samples based on core proteins. The prognostic predictive ability of the core protein was then evaluated. Differences in infiltration of immune cells between the different strata were identified.There were 678 differentially expressed proteins (DEPs), 94 intersected DEPs among them by intersecting with differentially expressed genes in TCGA and GSE30784 dataset. Seven core proteins were identified that significantly affected OSCC patient survival and strongly correlated with differential metabolites (R2 > 0.8). The samples were divided into high- and low-risk groups according to median risk score. The risk score and core proteins were well prognostic factor in OSCC patients. Genes in high-risk group were enriched in Notch signaling pathway, epithelial mesenchymal transition (EMT), and angiogenesis. Core proteins were strongly associated with the immune status of OSCC patients.The results established a 7-protein signatures with the hope of early detection and the capacity for risk assessment of OSCC patient prognosis. Further providing more potential targets for the treatment of OSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力山蝶应助小白采纳,获得10
3秒前
xg完成签到,获得积分10
3秒前
Zezezee发布了新的文献求助10
3秒前
笑点低可乐完成签到,获得积分10
4秒前
4秒前
坚强的樱发布了新的文献求助10
4秒前
4秒前
求解限发布了新的文献求助160
4秒前
5秒前
白宝宝北北白应助XIN采纳,获得10
5秒前
wenjian发布了新的文献求助10
5秒前
6秒前
华仔应助jy采纳,获得10
6秒前
hoongyan完成签到 ,获得积分10
6秒前
Ava应助aoxiangcaizi12采纳,获得10
8秒前
Amai完成签到,获得积分10
8秒前
9秒前
九川发布了新的文献求助10
10秒前
风的季节发布了新的文献求助10
10秒前
可耐的乐荷完成签到,获得积分10
11秒前
WEILAI完成签到,获得积分10
11秒前
my发布了新的文献求助10
11秒前
wenjian完成签到,获得积分10
12秒前
12秒前
Accept2024完成签到,获得积分10
13秒前
万能图书馆应助笑笑采纳,获得10
13秒前
伊丽莎白居易完成签到,获得积分10
14秒前
鳗鱼静珊发布了新的文献求助10
14秒前
yuyiyi完成签到,获得积分10
15秒前
无花果应助胖豆采纳,获得10
16秒前
通~发布了新的文献求助10
16秒前
cc发布了新的文献求助10
17秒前
18秒前
MILL发布了新的文献求助10
18秒前
月光入梦完成签到 ,获得积分10
19秒前
HC完成签到,获得积分10
20秒前
琪琪发布了新的文献求助10
20秒前
21秒前
淡定的思松应助风的季节采纳,获得10
22秒前
所所应助mm采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794