ADS_UNet: A nested UNet for histopathology image segmentation

计算机科学 编码器 分割 人工智能 增采样 图像(数学) 模式识别(心理学) 操作系统
作者
Yilong Yang,Srinandan Dasmahapatra,Sasan Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:226: 120128-120128 被引量:13
标识
DOI:10.1016/j.eswa.2023.120128
摘要

The UNet model consists of fully convolutional network (FCN) layers arranged as contracting encoder and upsampling decoder maps. Nested arrangements of these encoder and decoder maps give rise to extensions of the UNet model, such as UNete and UNet++. Other refinements include constraining the outputs of the convolutional layers to discriminate between segment labels when trained end to end, a property called deep supervision. This reduces feature diversity in these nested UNet models despite their large parameter space. Furthermore, for texture segmentation, pixel correlations at multiple scales contribute to the classification task; hence, explicit deep supervision of shallower layers is likely to enhance performance. In this paper, we propose ADS_UNet, a stage-wise additive training algorithm that incorporates resource-efficient deep supervision in shallower layers and takes performance-weighted combinations of the sub-UNets to create the segmentation model. We provide empirical evidence on three histopathology datasets to support the claim that the proposed ADS_UNet reduces correlations between constituent features and improves performance while being more resource efficient. We demonstrate that ADS_UNet outperforms state-of-the-art Transformer-based models by 1.08 and 0.6 points on CRAG and BCSS datasets, and yet requires only 37% of GPU consumption and 34% of training time as that required by Transformers. The source code is available at: .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助wyx采纳,获得10
1秒前
1秒前
fengzheLing发布了新的文献求助10
1秒前
JamesPei应助wjx采纳,获得10
1秒前
Evelyn10完成签到,获得积分10
2秒前
2秒前
hakuna发布了新的文献求助10
2秒前
2秒前
2秒前
整齐狗发布了新的文献求助10
3秒前
3秒前
FashionBoy应助小中采纳,获得10
3秒前
4秒前
赘婿应助橙橙采纳,获得10
4秒前
didilucky完成签到,获得积分10
4秒前
4秒前
4秒前
iNk应助佳子采纳,获得20
4秒前
可爱的函函应助xia采纳,获得10
5秒前
5秒前
香蕉觅云应助doclarrin采纳,获得10
5秒前
000发布了新的文献求助10
5秒前
OO发布了新的文献求助10
6秒前
露露发布了新的文献求助10
6秒前
搜集达人应助马户牙采纳,获得10
6秒前
7秒前
7秒前
midoli发布了新的文献求助10
7秒前
yy驳回了慕青应助
7秒前
啊嘞嘞完成签到,获得积分10
7秒前
社恐科研狗完成签到,获得积分10
8秒前
科隆龙发布了新的文献求助10
8秒前
8秒前
8秒前
佳佳发布了新的文献求助10
8秒前
bkagyin应助ccchengzi采纳,获得10
8秒前
9秒前
Dodder完成签到,获得积分10
9秒前
9秒前
lllllllll发布了新的文献求助10
9秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221784
求助须知:如何正确求助?哪些是违规求助? 2870476
关于积分的说明 8170735
捐赠科研通 2537406
什么是DOI,文献DOI怎么找? 1369415
科研通“疑难数据库(出版商)”最低求助积分说明 645510
邀请新用户注册赠送积分活动 619208