ADS_UNet: A nested UNet for histopathology image segmentation

计算机科学 编码器 分割 人工智能 增采样 图像(数学) 模式识别(心理学) 操作系统
作者
Yilong Yang,Srinandan Dasmahapatra,Sasan Mahmoodi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:226: 120128-120128 被引量:13
标识
DOI:10.1016/j.eswa.2023.120128
摘要

The UNet model consists of fully convolutional network (FCN) layers arranged as contracting encoder and upsampling decoder maps. Nested arrangements of these encoder and decoder maps give rise to extensions of the UNet model, such as UNete and UNet++. Other refinements include constraining the outputs of the convolutional layers to discriminate between segment labels when trained end to end, a property called deep supervision. This reduces feature diversity in these nested UNet models despite their large parameter space. Furthermore, for texture segmentation, pixel correlations at multiple scales contribute to the classification task; hence, explicit deep supervision of shallower layers is likely to enhance performance. In this paper, we propose ADS_UNet, a stage-wise additive training algorithm that incorporates resource-efficient deep supervision in shallower layers and takes performance-weighted combinations of the sub-UNets to create the segmentation model. We provide empirical evidence on three histopathology datasets to support the claim that the proposed ADS_UNet reduces correlations between constituent features and improves performance while being more resource efficient. We demonstrate that ADS_UNet outperforms state-of-the-art Transformer-based models by 1.08 and 0.6 points on CRAG and BCSS datasets, and yet requires only 37% of GPU consumption and 34% of training time as that required by Transformers. The source code is available at: .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助yzbbb采纳,获得30
刚刚
1秒前
1秒前
Alex应助masque采纳,获得20
1秒前
眯眯眼的咖啡完成签到,获得积分10
1秒前
Meyako应助LZW采纳,获得10
1秒前
传奇3应助成就的凤采纳,获得10
2秒前
2秒前
十八完成签到,获得积分10
2秒前
娃哈哈完成签到,获得积分10
2秒前
jingchengke发布了新的文献求助10
2秒前
NoMi发布了新的文献求助10
2秒前
2秒前
玉欢完成签到,获得积分20
4秒前
知性的友易完成签到,获得积分10
4秒前
falseme发布了新的文献求助10
4秒前
DDDD发布了新的文献求助10
4秒前
乐乐完成签到,获得积分10
4秒前
冯11完成签到,获得积分10
4秒前
你是谁完成签到,获得积分10
5秒前
妮妮完成签到,获得积分10
5秒前
小小鱼发布了新的文献求助10
6秒前
yuan发布了新的文献求助10
6秒前
爆米花应助别吃小米粥采纳,获得10
6秒前
小侯发布了新的文献求助10
6秒前
Anny完成签到,获得积分10
6秒前
小巫子完成签到,获得积分20
6秒前
鬼火完成签到,获得积分10
6秒前
6秒前
科研通AI5应助yhh采纳,获得10
7秒前
DukeAn809应助KYTQQ采纳,获得40
7秒前
可爱的函函应助寒月如雪采纳,获得10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
123关闭了123文献求助
8秒前
8秒前
丁火发布了新的文献求助20
8秒前
Maestro_S应助怕黑的擎采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426