已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptor: Improving the Robustness and Imperceptibility of Watermarking by the Adaptive Strength Factor

数字水印 水印 稳健性(进化) 计算机科学 人工智能 嵌入 图像质量 模式识别(心理学) 计算机视觉 算法 图像(数学) 生物化学 化学 基因
作者
Baowei Wang,Yufeng Wu,Guiling Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6260-6272 被引量:5
标识
DOI:10.1109/tcsvt.2023.3265970
摘要

In watermarking, the watermark embedding strength is crucial, and the introduction of the strength factor can adjust the trade-off between the quality of the encoded image and the accuracy of the recovered message, thus enabling good imperceptibility and robustness of the encoded image. In traditional watermarking methods, the strength factor is selected in relation to the cover image, and based on different images, different strength factors are manually selected or algorithmically derived to adjust the visual effect of the watermarked image. However, due to the subjectivity and inflexibility of traditional algorithms, they can not achieve the effect of adaptive adjustment of watermarked images. Recently, watermarking methods combined with deep learning have gradually occupied the mainstream of this field. In the testing stage, to balance the overall robustness and imperceptibility, the strength factor is no longer selected based on the cover image as in traditional methods. Instead, it is set to a universal value. Therefore, the watermarking method based on deep learning is still in the primary stage of the trial-and-error method. To solve the subjectivity of the hand-designed embedding strength algorithm of the traditional watermarking methods and the low elasticity of the strength factor of the learning method so as to realize the adaptive embedding of watermarks, we propose an adaptive watermarking method with separate training. The proposed method adds a new component, the Adaptor, compared to other frameworks. The Adaptor can adaptively select strength factors to control the embedding strength of the watermark relying on the cover image and secret message. A two-stage training method is used to maintain the stability of the training and to achieve the best results for each component. With the results obtained from our experiments, our proposed method can find the appropriate strength factor and optimize it, resulting in improved robustness and imperceptibility of the watermark. The proposed method shows better results compared to the current state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jonathan发布了新的文献求助10
3秒前
3秒前
XhuaQye发布了新的文献求助10
3秒前
wab完成签到,获得积分0
3秒前
6秒前
外向向雁完成签到,获得积分10
6秒前
平常寄柔发布了新的文献求助10
7秒前
Jonathan完成签到 ,获得积分20
8秒前
xiaoxiao完成签到,获得积分10
9秒前
5cdc应助XhuaQye采纳,获得10
10秒前
只只发布了新的文献求助10
13秒前
13秒前
oopsreach完成签到,获得积分10
13秒前
科研通AI2S应助畅快访蕊采纳,获得10
15秒前
共享精神应助忧郁的高烽采纳,获得30
18秒前
19秒前
19秒前
乐乐完成签到 ,获得积分10
20秒前
20秒前
Lyn发布了新的文献求助10
21秒前
平常寄柔完成签到,获得积分20
22秒前
所所应助程风破浪采纳,获得30
23秒前
23秒前
24秒前
wjm完成签到,获得积分20
25秒前
bkagyin应助chrispaul采纳,获得30
26秒前
29秒前
CodeCraft应助zjh采纳,获得10
30秒前
xiaoxiao发布了新的文献求助10
30秒前
科研通AI2S应助畅快访蕊采纳,获得10
31秒前
吃土豆长大的马铃薯完成签到 ,获得积分10
33秒前
34秒前
Chnp发布了新的文献求助10
35秒前
天天都想打小花关注了科研通微信公众号
35秒前
zxr发布了新的文献求助10
35秒前
冷酷的魂幽完成签到,获得积分10
36秒前
木仔仔发布了新的文献求助10
37秒前
37秒前
村里的黑叔叔完成签到,获得积分10
37秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129961
求助须知:如何正确求助?哪些是违规求助? 2780706
关于积分的说明 7749763
捐赠科研通 2436010
什么是DOI,文献DOI怎么找? 1294449
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570