Uncovering the dual influence processes for click-through intention in the mobile social platform: An elaboration likelihood model perspective

精化可能性模型 心理学 背景(考古学) 产品(数学) 调解 认知 社会认知理论 结构方程建模 个性化 声誉 社会心理学 广告 计算机科学 说服 业务 万维网 社会学 古生物学 社会科学 几何学 数学 神经科学 机器学习 生物
作者
Zhen Shao,Lin Zhang,Zhengyuan Pan,Jose Benitez
出处
期刊:Information & Management [Elsevier]
卷期号:60 (5): 103799-103799 被引量:14
标识
DOI:10.1016/j.im.2023.103799
摘要

The burgeoning growth of mobile social platforms has gained the attention of advertisers, and the way how to stimulate users’ click-through intention in the virtual social community is becoming a research focus of scholars. Drawing on the elaboration likelihood model (ELM), this study develops a theoretical framework to examine the mediation effects of cognitive vs. affective trust on the relationship between dual routes (central route vs. peripheral route) and users’ click-through intention in the context of mobile social platforms. Particularly, users’ prior product experience is incorporated in the research model to examine its moderating effect on the influence processes. A scenario-based survey is conducted in China, and the partial least square method is used to analyze the data. Empirical results suggest that perceived content personalization is positively associated with cognitive trust, and its influence is stronger for experienced users with the recommended product. Social recommendation is positively associated with affective trust, and its impact is higher for users without prior product experience. Advertiser reputation is positively associated with both cognitive trust and affective trust, and its effect on cognitive trust is stronger for users without prior product experience, while its impact on affective trust is higher for users with prior product experience. Moreover, cognitive trust is positively associated with affective trust, and the two trust mechanisms have positive influences on click-through intention toward the recommended product. We discuss theoretical and practical implications in the final section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
假萌完成签到,获得积分10
3秒前
zilt1109发布了新的文献求助10
3秒前
苹果代柔关注了科研通微信公众号
3秒前
把石头还给石头完成签到,获得积分10
3秒前
4秒前
李喜喜发布了新的文献求助10
4秒前
4秒前
zmc发布了新的文献求助10
4秒前
5秒前
8秒前
8秒前
爆米花应助Vegccc采纳,获得10
8秒前
chengzi发布了新的文献求助10
11秒前
12秒前
12秒前
荀之玉完成签到,获得积分10
13秒前
zilt1109完成签到,获得积分10
13秒前
温柔的如完成签到,获得积分20
13秒前
14秒前
隐形曼青应助研友_LOoomL采纳,获得10
14秒前
14秒前
思源应助闲云野鹤采纳,获得10
14秒前
15秒前
YYY完成签到,获得积分10
16秒前
洁净方盒发布了新的文献求助10
17秒前
张伟发布了新的文献求助10
17秒前
WXR发布了新的文献求助10
17秒前
脆脆鲨发布了新的文献求助10
18秒前
18秒前
19秒前
kkk发布了新的文献求助30
19秒前
chenzq完成签到,获得积分10
21秒前
郝君颖完成签到,获得积分0
21秒前
tong童发布了新的文献求助10
21秒前
BOB发布了新的文献求助10
22秒前
李健应助李喜喜采纳,获得10
22秒前
天天快乐应助lcc采纳,获得10
22秒前
23秒前
momo发布了新的文献求助10
23秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222804
求助须知:如何正确求助?哪些是违规求助? 2871564
关于积分的说明 8176070
捐赠科研通 2538543
什么是DOI,文献DOI怎么找? 1370632
科研通“疑难数据库(出版商)”最低求助积分说明 645818
邀请新用户注册赠送积分活动 619706