Leveraging Google Earth Engine to estimate foliar C: N ratio in an African savannah rangeland using Sentinel 2 data

牧场 环境科学 植被(病理学) 牧场管理 多光谱图像 生产力 生态系统 农林复合经营 遥感 生态学 地理 生物 医学 宏观经济学 病理 经济
作者
Adeola M. Arogoundade,Onisimo Mutanga,John Odindi,Omosalewa Odebiri
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:30: 100981-100981 被引量:4
标识
DOI:10.1016/j.rsase.2023.100981
摘要

Rangelands are important fodder for livestock and wildlife, and provide a range of ecosystem services to the environment. Foliar nutrients such as nitrogen, carbon, and plant pigments such as chlorophyll can be used as indicators of rangeland stress, and play a vital role in determining their health and productivity. The C:N ratio is a key factor in regulating nutrient utilization efficiency and productivity in plants. Understanding the C:N ratio in rangelands could therefore help herders understand the nutrient limitations, and herbivores distribution to facilitate strategic grazing plans and management. Therefore, there is a need for spatially accurate and up-to-date information on C:N ratio to understand and monitor rangeland health for proactive rangeland management. Remote sensing approaches are spatially explicit, cost-effective, and efficient in monitoring foliar nutrient ratio in rangelands. Whereas, the new generation and advanced Sentinel 2 multispectral sensor has the potential to monitor vegetation health, the strength of its spectral settings in relation to predicting the C:N ratio in rangelands remains largely unexplored. Advanced and freely available Sentinel 2 multispectral sensor (MSI) with specialized red edge bands offer unprecedented opportunities in mapping and monitoring rangeland nutrients. Hence, this study examined the prospect of combined Sentinel-2 (MSI) spectral bands and vegetation indices, and the random forest algorithm to map the C: N ratio within a rangeland. To determine the C:N ratio distribution, the Random Forest and the Boruta variable selection were employed to assess the performance of the combined Sentinel 2 spectral bands and vegetation indices models. Results show an estimated accuracy R2 of 81 and 74, with RMSE of 2.38 and 2.68 for calibration and validation datasets of the C:N ratio model established by combining the spectral bands and vegetation indices. The random forest variable selection model indicates that the red edge bands, and near-infrared were the most valuable in predicting the C:N ratio. The red edge and near-infrared (Inverted Red-edge Chlorophyll Index) and near-infrared and red band (Enhanced Vegetation Index) vegetation indices were important predictor variables for estimating the C:N ratio. This study demonstrates the prospects and value of mapping the geographic distribution of the C:N ratio in rangelands using high spatial resolution Sentinel 2 MSI. This information will not only help determine nutrient deficiencies in rangelands but will also provide informed recommendation in mitigating landscape degeneration to allow for rangeland regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助baiyang99采纳,获得10
1秒前
Giggle完成签到,获得积分10
4秒前
陈晨发布了新的文献求助10
5秒前
天天快乐应助粗心的善若采纳,获得10
5秒前
6秒前
超级感谢大佬滴帮助完成签到,获得积分10
7秒前
10秒前
光能使者完成签到,获得积分10
11秒前
12秒前
13秒前
qiuli完成签到,获得积分10
13秒前
17秒前
冂xx易云完成签到,获得积分10
19秒前
嬴政飞发布了新的文献求助10
19秒前
苏苏完成签到,获得积分10
20秒前
20秒前
lpk完成签到,获得积分10
20秒前
科研通AI6应助guyutang采纳,获得20
21秒前
21秒前
23秒前
qiuli发布了新的文献求助10
24秒前
25秒前
hh完成签到,获得积分20
25秒前
儒雅的蜜粉完成签到,获得积分10
26秒前
shufessm完成签到,获得积分0
27秒前
寇博翔发布了新的文献求助10
28秒前
hh发布了新的文献求助10
28秒前
寻绿完成签到,获得积分10
29秒前
cora完成签到 ,获得积分10
34秒前
万能图书馆应助海蓝博采纳,获得10
36秒前
37秒前
lpk发布了新的文献求助10
37秒前
42秒前
43秒前
44秒前
豪哥发布了新的文献求助10
44秒前
褪色完成签到,获得积分10
44秒前
xiaoyu完成签到,获得积分10
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478