Leveraging Google Earth Engine to estimate foliar C: N ratio in an African savannah rangeland using Sentinel 2 data

牧场 环境科学 植被(病理学) 牧场管理 多光谱图像 生产力 生态系统 农林复合经营 遥感 生态学 地理 生物 医学 病理 经济 宏观经济学
作者
Adeola M. Arogoundade,Onisimo Mutanga,John Odindi,Omosalewa Odebiri
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:30: 100981-100981 被引量:1
标识
DOI:10.1016/j.rsase.2023.100981
摘要

Rangelands are important fodder for livestock and wildlife, and provide a range of ecosystem services to the environment. Foliar nutrients such as nitrogen, carbon, and plant pigments such as chlorophyll can be used as indicators of rangeland stress, and play a vital role in determining their health and productivity. The C:N ratio is a key factor in regulating nutrient utilization efficiency and productivity in plants. Understanding the C:N ratio in rangelands could therefore help herders understand the nutrient limitations, and herbivores distribution to facilitate strategic grazing plans and management. Therefore, there is a need for spatially accurate and up-to-date information on C:N ratio to understand and monitor rangeland health for proactive rangeland management. Remote sensing approaches are spatially explicit, cost-effective, and efficient in monitoring foliar nutrient ratio in rangelands. Whereas, the new generation and advanced Sentinel 2 multispectral sensor has the potential to monitor vegetation health, the strength of its spectral settings in relation to predicting the C:N ratio in rangelands remains largely unexplored. Advanced and freely available Sentinel 2 multispectral sensor (MSI) with specialized red edge bands offer unprecedented opportunities in mapping and monitoring rangeland nutrients. Hence, this study examined the prospect of combined Sentinel-2 (MSI) spectral bands and vegetation indices, and the random forest algorithm to map the C: N ratio within a rangeland. To determine the C:N ratio distribution, the Random Forest and the Boruta variable selection were employed to assess the performance of the combined Sentinel 2 spectral bands and vegetation indices models. Results show an estimated accuracy R2 of 81 and 74, with RMSE of 2.38 and 2.68 for calibration and validation datasets of the C:N ratio model established by combining the spectral bands and vegetation indices. The random forest variable selection model indicates that the red edge bands, and near-infrared were the most valuable in predicting the C:N ratio. The red edge and near-infrared (Inverted Red-edge Chlorophyll Index) and near-infrared and red band (Enhanced Vegetation Index) vegetation indices were important predictor variables for estimating the C:N ratio. This study demonstrates the prospects and value of mapping the geographic distribution of the C:N ratio in rangelands using high spatial resolution Sentinel 2 MSI. This information will not only help determine nutrient deficiencies in rangelands but will also provide informed recommendation in mitigating landscape degeneration to allow for rangeland regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧念寒完成签到,获得积分10
3秒前
玉ER完成签到,获得积分10
5秒前
希望天下0贩的0应助wei采纳,获得10
5秒前
北枳完成签到 ,获得积分10
9秒前
地精术士完成签到,获得积分10
10秒前
浙江嘉兴完成签到,获得积分10
10秒前
我是站长才怪应助通~采纳,获得10
12秒前
shiyu完成签到,获得积分10
12秒前
Herman_Chen完成签到,获得积分10
19秒前
Zn应助牛文文采纳,获得10
21秒前
21秒前
22秒前
贤惠的白开水完成签到 ,获得积分10
22秒前
英姑应助林林林采纳,获得10
23秒前
科研小民工应助Anquan采纳,获得30
23秒前
cyt9999发布了新的文献求助10
24秒前
天天快乐应助好难啊采纳,获得10
25秒前
干净的烧鹅完成签到,获得积分10
26秒前
27秒前
27秒前
在人中发布了新的文献求助10
28秒前
28秒前
fls221完成签到,获得积分10
29秒前
Laity完成签到,获得积分10
31秒前
31秒前
健忘捕发布了新的文献求助10
31秒前
林林林发布了新的文献求助10
32秒前
ok完成签到 ,获得积分10
33秒前
乐乐应助wewe采纳,获得30
33秒前
33秒前
拥有八根情丝完成签到 ,获得积分10
34秒前
科研通AI5应助Rex采纳,获得10
35秒前
36秒前
情怀应助樱桃小丸子采纳,获得10
37秒前
好难啊发布了新的文献求助10
38秒前
38秒前
42秒前
43秒前
43秒前
wewe完成签到,获得积分20
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851