Leveraging Google Earth Engine to estimate foliar C: N ratio in an African savannah rangeland using Sentinel 2 data

牧场 环境科学 植被(病理学) 牧场管理 多光谱图像 生产力 生态系统 农林复合经营 遥感 生态学 地理 生物 医学 病理 经济 宏观经济学
作者
Adeola M. Arogoundade,Onisimo Mutanga,John Odindi,Omosalewa Odebiri
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:30: 100981-100981 被引量:1
标识
DOI:10.1016/j.rsase.2023.100981
摘要

Rangelands are important fodder for livestock and wildlife, and provide a range of ecosystem services to the environment. Foliar nutrients such as nitrogen, carbon, and plant pigments such as chlorophyll can be used as indicators of rangeland stress, and play a vital role in determining their health and productivity. The C:N ratio is a key factor in regulating nutrient utilization efficiency and productivity in plants. Understanding the C:N ratio in rangelands could therefore help herders understand the nutrient limitations, and herbivores distribution to facilitate strategic grazing plans and management. Therefore, there is a need for spatially accurate and up-to-date information on C:N ratio to understand and monitor rangeland health for proactive rangeland management. Remote sensing approaches are spatially explicit, cost-effective, and efficient in monitoring foliar nutrient ratio in rangelands. Whereas, the new generation and advanced Sentinel 2 multispectral sensor has the potential to monitor vegetation health, the strength of its spectral settings in relation to predicting the C:N ratio in rangelands remains largely unexplored. Advanced and freely available Sentinel 2 multispectral sensor (MSI) with specialized red edge bands offer unprecedented opportunities in mapping and monitoring rangeland nutrients. Hence, this study examined the prospect of combined Sentinel-2 (MSI) spectral bands and vegetation indices, and the random forest algorithm to map the C: N ratio within a rangeland. To determine the C:N ratio distribution, the Random Forest and the Boruta variable selection were employed to assess the performance of the combined Sentinel 2 spectral bands and vegetation indices models. Results show an estimated accuracy R2 of 81 and 74, with RMSE of 2.38 and 2.68 for calibration and validation datasets of the C:N ratio model established by combining the spectral bands and vegetation indices. The random forest variable selection model indicates that the red edge bands, and near-infrared were the most valuable in predicting the C:N ratio. The red edge and near-infrared (Inverted Red-edge Chlorophyll Index) and near-infrared and red band (Enhanced Vegetation Index) vegetation indices were important predictor variables for estimating the C:N ratio. This study demonstrates the prospects and value of mapping the geographic distribution of the C:N ratio in rangelands using high spatial resolution Sentinel 2 MSI. This information will not only help determine nutrient deficiencies in rangelands but will also provide informed recommendation in mitigating landscape degeneration to allow for rangeland regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dejavu完成签到 ,获得积分10
1秒前
5秒前
5秒前
丰富代容完成签到,获得积分10
6秒前
好好发布了新的文献求助10
9秒前
10秒前
10秒前
ccm应助Alan采纳,获得10
11秒前
13秒前
zyj完成签到,获得积分10
14秒前
悦耳秋珊完成签到,获得积分10
15秒前
15秒前
可爱的函函应助biuesky采纳,获得10
16秒前
昏睡的半莲完成签到 ,获得积分10
16秒前
野猪亨利28完成签到,获得积分10
17秒前
活泼红牛发布了新的文献求助10
17秒前
17秒前
18秒前
呆萌孤容完成签到,获得积分10
22秒前
鱼笙完成签到,获得积分10
22秒前
23秒前
研友_8DAv0L发布了新的文献求助10
24秒前
天天快乐应助顾初安采纳,获得10
25秒前
悦耳的子默关注了科研通微信公众号
26秒前
26秒前
lst发布了新的文献求助20
26秒前
打工人不酷完成签到 ,获得积分10
26秒前
赘婿应助Wingliu采纳,获得10
27秒前
27秒前
28秒前
29秒前
30秒前
打打应助兴奋帽子采纳,获得10
31秒前
32秒前
33秒前
薛薛@发布了新的文献求助10
33秒前
心内小白发布了新的文献求助10
33秒前
34秒前
王唯任完成签到,获得积分10
34秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793064
关于积分的说明 7805155
捐赠科研通 2449387
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291