牧场
环境科学
植被(病理学)
牧场管理
多光谱图像
生产力
生态系统
农林复合经营
遥感
生态学
地理
生物
医学
病理
经济
宏观经济学
作者
Adeola M. Arogoundade,Onisimo Mutanga,John Odindi,Omosalewa Odebiri
标识
DOI:10.1016/j.rsase.2023.100981
摘要
Rangelands are important fodder for livestock and wildlife, and provide a range of ecosystem services to the environment. Foliar nutrients such as nitrogen, carbon, and plant pigments such as chlorophyll can be used as indicators of rangeland stress, and play a vital role in determining their health and productivity. The C:N ratio is a key factor in regulating nutrient utilization efficiency and productivity in plants. Understanding the C:N ratio in rangelands could therefore help herders understand the nutrient limitations, and herbivores distribution to facilitate strategic grazing plans and management. Therefore, there is a need for spatially accurate and up-to-date information on C:N ratio to understand and monitor rangeland health for proactive rangeland management. Remote sensing approaches are spatially explicit, cost-effective, and efficient in monitoring foliar nutrient ratio in rangelands. Whereas, the new generation and advanced Sentinel 2 multispectral sensor has the potential to monitor vegetation health, the strength of its spectral settings in relation to predicting the C:N ratio in rangelands remains largely unexplored. Advanced and freely available Sentinel 2 multispectral sensor (MSI) with specialized red edge bands offer unprecedented opportunities in mapping and monitoring rangeland nutrients. Hence, this study examined the prospect of combined Sentinel-2 (MSI) spectral bands and vegetation indices, and the random forest algorithm to map the C: N ratio within a rangeland. To determine the C:N ratio distribution, the Random Forest and the Boruta variable selection were employed to assess the performance of the combined Sentinel 2 spectral bands and vegetation indices models. Results show an estimated accuracy R2 of 81 and 74, with RMSE of 2.38 and 2.68 for calibration and validation datasets of the C:N ratio model established by combining the spectral bands and vegetation indices. The random forest variable selection model indicates that the red edge bands, and near-infrared were the most valuable in predicting the C:N ratio. The red edge and near-infrared (Inverted Red-edge Chlorophyll Index) and near-infrared and red band (Enhanced Vegetation Index) vegetation indices were important predictor variables for estimating the C:N ratio. This study demonstrates the prospects and value of mapping the geographic distribution of the C:N ratio in rangelands using high spatial resolution Sentinel 2 MSI. This information will not only help determine nutrient deficiencies in rangelands but will also provide informed recommendation in mitigating landscape degeneration to allow for rangeland regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI