材料科学
陶瓷
热稳定性
四方晶系
电介质
极化(电化学)
储能
铁电陶瓷
铁电性
磁滞
复合材料
光电子学
工程物理
晶体结构
凝聚态物理
化学工程
结晶学
热力学
功率(物理)
化学
物理
工程类
物理化学
作者
Mingkun Wang,Tian Bai,Aina He,Zhongbin Pan,Jinghao Zhao,Luomeng Tang,Zhihe Zhao,Jinjun Liu,Shushuang Li,Weixing Xia
标识
DOI:10.1016/j.jmat.2023.03.007
摘要
Herein, a novel strategy for regulating the phase structure was used to significantly enhance the recoverable energy storage density (Wrec) and the thermal stability via designing the (1-x)[(Bi0.5Na0.5)0.7Sr0.3TiO3]-xBiScO3 ((1-x)BNST-xBS) relaxor ferroelectric ceramics. The incorporation of BS into BNST ceramics markedly increases the local micro-structure disorder, causing a high polarization and inhibiting polarization hysteresis for 0.95BNST-0.05BS ceramics, leading to a large Wrec of 5.41 J/cm3 with an ideal efficiency (η) of 78.5 %. Meanwhile, transmission electron microscope (TEM) results further proved that the nano-domain structure and the tetragonal (P4bm) phase superlattice structure of 0.95BNST-0.05BS ceramics possess an excellent thermal stability (20–200 °C). An outstanding Wrec value of 3.18 × (1 ± 0.03) J/cm3 and an η value of 74.500 ± 0.025 are achieved under a temperature range from 20 to 200 °C. This work provides a promising method for phase-structure design that can make it possible to apply temperature-insensitive ceramic dielectrics with a high energy storage density in harsh environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI