Effect of polyplex surface charge on cellular internalization and intracellular trafficking

内化 内吞作用 聚乙烯亚胺 内吞循环 细胞内 基因传递 转染 内体 生物物理学 细胞生物学 表面电荷 聚谷氨酸 化学 生物 生物化学 细胞 基因 物理化学
作者
Landon Mott,Caleb Akers,Daniel W. Pack
出处
期刊:Journal of Drug Delivery Science and Technology [Elsevier]
卷期号:84: 104465-104465 被引量:1
标识
DOI:10.1016/j.jddst.2023.104465
摘要

Design of non-viral gene delivery vectors requires optimization of various physical properties to maximize transgene expression. In particular, polyplex surface charge plays an important role in particle interactions with biological constituents including serum proteins and the plasma membrane. Ternary polyplexes comprising 25-kDa branched polyethylenimine (PEI), 15-kDa poly(α-glutamic acid) (PGA), and DNA were prepared by electrostatic complexation, and the surface charge was controlled by varying the ratio of polycation and polyanion. Cellular internalization of positively and negatively charged polyplexes was similar, but positively charged polyplexes exhibited superior gene delivery efficiency, suggesting differences in intracellular processing depending on surface charge. Thus, pharmacological inhibitors were used to evaluate the endocytic mechanisms involved in internalization and intracellular trafficking of PGA/PEI/DNA polyplexes of positive (+11 mV) and negative (−11 mV) zeta potential. Positively charged polyplexes were internalized primarily through caveolin-dependent endocytosis and avoided trafficking to lysosomes. Negatively charged polyplexes, however, were internalized to a greater extent by clathrin-dependent endocytosis and were found in acidified endolysosomal compartments, likely leading to degradation and poor gene delivery. Thus, transfection mediated by PGA/PEI/DNA polyplexes, may benefit from the addition of targeting ligands that would facilitate internalization through caveolin-dependent endocytosis while retaining advantages of negatively charged particles, including serum stability and low cytotoxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助xy采纳,获得10
1秒前
曼冬发布了新的文献求助10
1秒前
上官若男应助sjxx采纳,获得10
1秒前
2秒前
守墓人完成签到 ,获得积分10
2秒前
榴莲完成签到,获得积分10
2秒前
对照完成签到 ,获得积分10
2秒前
3秒前
3秒前
初闻完成签到,获得积分10
4秒前
惠惠发布了新的文献求助10
4秒前
慕青应助a1oft采纳,获得10
5秒前
叶十七完成签到,获得积分10
5秒前
汉堡包应助宇_采纳,获得10
5秒前
SciGPT应助H71000A采纳,获得10
5秒前
侦察兵发布了新的文献求助10
6秒前
自然乐松关注了科研通微信公众号
6秒前
zqfxc完成签到,获得积分10
6秒前
sumeiling完成签到,获得积分20
6秒前
朴素的鸡完成签到,获得积分20
7秒前
大七发布了新的文献求助10
7秒前
zzzq完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
请叫我风吹麦浪应助卡卡采纳,获得10
8秒前
传奇3应助起司嗯采纳,获得10
9秒前
remimazolam发布了新的文献求助10
10秒前
在水一方应助悦耳寒松采纳,获得10
10秒前
满座完成签到,获得积分10
10秒前
科研通AI2S应助coffee采纳,获得10
10秒前
11秒前
雪山飞龙发布了新的文献求助30
11秒前
科研通AI5应助phd采纳,获得10
12秒前
善学以致用应助京阿尼采纳,获得10
12秒前
Sylvia完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794