亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Emotion Recognition of Subjects With Hearing Impairment Based on Fusion of Facial Expression and EEG Topographic Map

脑电图 面部表情 人工智能 悲伤 语音识别 心理学 模式识别(心理学) 感觉运动节律 情绪分类 计算机科学 脑-机接口 听力学 愤怒 神经科学 医学 精神科
作者
Dahua Li,Jiayin Liu,Yi Yang,Fazheng Hou,Haotian Song,Yu Song,Qiang Gao,Zemin Mao
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 437-445 被引量:5
标识
DOI:10.1109/tnsre.2022.3225948
摘要

Emotion analysis has been employed in many fields such as human-computer interaction, rehabilitation, and neuroscience. But most emotion analysis methods mainly focus on healthy controls or depression patients. This paper aims to classify the emotional expressions in individuals with hearing impairment based on EEG signals and facial expressions. Two kinds of signals were collected simultaneously when the subjects watched affective video clips, and we labeled the video clips with discrete emotional states (fear, happiness, calmness, and sadness). We extracted the differential entropy (DE) features based on EEG signals and converted DE features into EEG topographic maps (ETM). Next, the ETM and facial expressions were fused by the multichannel fusion method. Finally, a deep learning classifier CBAM_ResNet34 combined Residual Network (ResNet) and Convolutional Block Attention Module (CBAM) was used for subject-dependent emotion classification. The results show that the average classification accuracy of four emotions recognition after multimodal fusion achieves 78.32%, which is higher than 67.90% for facial expressions and 69.43% for EEG signals. Moreover, visualization by the Gradient-weighted Class Activation Mapping (Grad-CAM) of ETM showed that the prefrontal, temporal and occipital lobes were the brain regions closely related to emotional changes in individuals with hearing impairment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
violet关注了科研通微信公众号
刚刚
研友_VZG7GZ应助九月采纳,获得10
4秒前
13秒前
18651603532发布了新的文献求助10
14秒前
JamesPei应助长情胡萝卜采纳,获得10
16秒前
19秒前
Criminology34应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
22秒前
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
BowieHuang应助科研通管家采纳,获得30
22秒前
劉浏琉应助科研通管家采纳,获得10
22秒前
轻松大王应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
劉浏琉应助科研通管家采纳,获得10
22秒前
22秒前
qing发布了新的文献求助10
26秒前
32秒前
34秒前
无有山发布了新的文献求助10
35秒前
37秒前
fangjc1024发布了新的文献求助10
38秒前
阿鑫发布了新的文献求助10
41秒前
42秒前
852应助栀鸢采纳,获得10
43秒前
fangjc1024完成签到,获得积分10
45秒前
58秒前
1分钟前
aaa发布了新的文献求助10
1分钟前
陈小子完成签到 ,获得积分10
1分钟前
风眠发布了新的文献求助10
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
舞墨轩完成签到 ,获得积分10
1分钟前
慕青应助苗条的小蚂蚁采纳,获得10
1分钟前
1分钟前
ylh发布了新的文献求助20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788381
求助须知:如何正确求助?哪些是违规求助? 5706772
关于积分的说明 15473474
捐赠科研通 4916463
什么是DOI,文献DOI怎么找? 2646349
邀请新用户注册赠送积分活动 1594016
关于科研通互助平台的介绍 1548447