Emotion Recognition of Subjects With Hearing Impairment Based on Fusion of Facial Expression and EEG Topographic Map

脑电图 面部表情 人工智能 悲伤 语音识别 心理学 模式识别(心理学) 感觉运动节律 情绪分类 计算机科学 脑-机接口 听力学 愤怒 神经科学 医学 精神科
作者
Dahua Li,Jiayin Liu,Yi Yang,Fazheng Hou,Haotian Song,Yu Song,Qiang Gao,Zemin Mao
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 437-445 被引量:5
标识
DOI:10.1109/tnsre.2022.3225948
摘要

Emotion analysis has been employed in many fields such as human-computer interaction, rehabilitation, and neuroscience. But most emotion analysis methods mainly focus on healthy controls or depression patients. This paper aims to classify the emotional expressions in individuals with hearing impairment based on EEG signals and facial expressions. Two kinds of signals were collected simultaneously when the subjects watched affective video clips, and we labeled the video clips with discrete emotional states (fear, happiness, calmness, and sadness). We extracted the differential entropy (DE) features based on EEG signals and converted DE features into EEG topographic maps (ETM). Next, the ETM and facial expressions were fused by the multichannel fusion method. Finally, a deep learning classifier CBAM_ResNet34 combined Residual Network (ResNet) and Convolutional Block Attention Module (CBAM) was used for subject-dependent emotion classification. The results show that the average classification accuracy of four emotions recognition after multimodal fusion achieves 78.32%, which is higher than 67.90% for facial expressions and 69.43% for EEG signals. Moreover, visualization by the Gradient-weighted Class Activation Mapping (Grad-CAM) of ETM showed that the prefrontal, temporal and occipital lobes were the brain regions closely related to emotional changes in individuals with hearing impairment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jam发布了新的文献求助10
刚刚
1秒前
yym完成签到,获得积分10
1秒前
xiaoshi发布了新的文献求助10
2秒前
uui完成签到,获得积分10
2秒前
小红完成签到,获得积分10
3秒前
4秒前
4秒前
dingjianqiang发布了新的文献求助10
4秒前
Agoni完成签到,获得积分10
4秒前
Jack完成签到,获得积分10
5秒前
HHHSean完成签到,获得积分10
6秒前
小臭屁发布了新的文献求助30
6秒前
呼延含双发布了新的文献求助10
6秒前
pretty发布了新的文献求助10
8秒前
HHHSean发布了新的文献求助10
8秒前
一只羊完成签到 ,获得积分10
9秒前
Orange应助完美的火龙果采纳,获得10
11秒前
呼延含双完成签到,获得积分10
12秒前
yznfly应助年轻的仙人掌采纳,获得30
13秒前
搜集达人应助dingjianqiang采纳,获得10
16秒前
有魅力天抒完成签到 ,获得积分10
17秒前
丘比特应助燕子采纳,获得10
17秒前
18秒前
18秒前
上官靖发布了新的文献求助10
18秒前
Jerry完成签到,获得积分10
19秒前
19秒前
毕业比耶完成签到,获得积分10
20秒前
phstar发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
22秒前
慕容飞凤发布了新的文献求助10
24秒前
等待祥发布了新的文献求助10
25秒前
26秒前
阿拉哈哈笑完成签到,获得积分10
26秒前
闪闪的若发布了新的文献求助10
27秒前
阿燕发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511902
关于积分的说明 11160537
捐赠科研通 3246634
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874451
科研通“疑难数据库(出版商)”最低求助积分说明 804403