Prediction of γ-ray shielding performance and study of Bi/PU coated fabric

电磁屏蔽 材料科学 涂层 复合材料 聚氨酯 扫描电子显微镜 机械工程 工程类 冶金
作者
Weibin Li,Shuai Chen,Min Peng,Xian Zhou,Xiaoming Zhao
出处
期刊:Textile Research Journal [SAGE]
卷期号:93 (9-10): 2303-2316 被引量:1
标识
DOI:10.1177/00405175221143523
摘要

The radiation shielding simulation model of coated fabric (flexible composite) was established for the first time by SuperMC nuclear simulation software to help solve the problems of small volume, complex structure, and difficult design of flexible shielding materials, and the γ-ray shielding performance was calculated. Bismuth/polyurethane coated fabric was prepared by a coating method, and its scanning electron microscope, γ-ray shielding performance and mechanical properties were tested. The results show that the simulation accuracy was improved due to the one-to-one correspondence between the structural parameters and performance parameters of the simulation model and the actual samples. The simulation value was in good agreement with the measured value. The shielding performance and mechanical properties of fabric composites were improved after coating. Increasing the content of bismuth and coating thickness can improve the shielding performance of the coated fabric. However, when the content of bismuth was too large, or the coating was too thick, the mechanical properties were relatively decreased. The deposition of ray energy in the material was analyzed by the visual analysis method, and the influence mechanism of process parameters on shielding performance was further revealed, which provided a new theoretical reference for the design of flexible shielding materials. A shielding material design and performance prediction method based on SuperMC is proposed, which can be used for personalized customization design and performance prediction and evaluation before use. It has practical guiding significance for producing and manufacturing flexible fabric shielding materials for protective clothing and equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
微微发布了新的文献求助10
刚刚
刚刚
CL发布了新的文献求助10
1秒前
明理千雁发布了新的文献求助20
1秒前
1秒前
傲娇紫烟完成签到,获得积分10
1秒前
2秒前
Jasper应助帕克采纳,获得10
4秒前
cliche发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
6秒前
7秒前
hhhh发布了新的文献求助10
7秒前
结实的荷发布了新的文献求助10
8秒前
谨慎不二发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
SDQT发布了新的文献求助10
11秒前
Jenny发布了新的文献求助10
12秒前
脑洞疼应助丶氵一生里采纳,获得20
13秒前
ding应助asdadadad采纳,获得10
13秒前
认真科研发布了新的文献求助10
14秒前
个性的饼干关注了科研通微信公众号
14秒前
homeworkk发布了新的文献求助10
14秒前
16秒前
李秀钦关注了科研通微信公众号
16秒前
17秒前
自觉的芷蝶完成签到,获得积分10
17秒前
安静的慕凝完成签到,获得积分10
17秒前
不配.应助ZZZ采纳,获得20
18秒前
岁岁安完成签到,获得积分10
18秒前
Hh发布了新的文献求助10
19秒前
yq发布了新的文献求助10
20秒前
平淡夏云完成签到,获得积分10
20秒前
早岁完成签到,获得积分10
20秒前
IBMffff应助jazzmantan采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323