数学
有限元法
伽辽金法
数学分析
间断伽辽金法
混合有限元法
插值(计算机图形学)
扩展有限元法
点式的
光滑有限元法
泊松方程
偏微分方程
投影(关系代数)
超收敛
应用数学
边界节点法
边界元法
算法
物理
经典力学
热力学
运动(物理)
作者
Tatyana Sorokina,Shangyou Zhang
出处
期刊:Cornell University - arXiv
日期:2020-10-03
标识
DOI:10.48550/arxiv.2010.01460
摘要
When solving the Poisson equation by the finite element method, we use one degree of freedom for interpolation by the given Laplacian - the right hand side function in the partial differential equation. The finite element solution is the Galerkin projection in a smaller vector space. The idea is similar to that of interpolating the boundary condition in the standard finite element method. Due to the pointwise interpolation, our method yields a smaller system of equations and a better condition number. The number of unknowns on each element is reduced significantly from $(k^2+3k+2)/2$ to $3k$ for the $P_k$ ($k\ge 3$) finite element. We construct 2D $P_2$ conforming and nonconforming, and $P_k$ ($k\ge3$) conforming interpolated Galerkin finite elements on triangular grids. This interpolated Galerkin finite element method is proved to converge at the optimal order. Numerical tests and comparisons with the standard finite elements are presented, verifying the theory and showing advantages of the interpolated Galerkin finite element method.
科研通智能强力驱动
Strongly Powered by AbleSci AI