Improving accelerated MRI by deep learning with sparsified complex data

迭代重建 计算机科学 卷积神经网络 算法 GSM演进的增强数据速率 图像质量 人工智能 模式识别(心理学) 图像(数学)
作者
Zhaoyang Jin,Qing Xiang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (5): 1825-1838 被引量:3
标识
DOI:10.1002/mrm.29556
摘要

Purpose To obtain high‐quality accelerated MR images with complex‐valued reconstruction from undersampled k‐space data. Methods The MRI scans from human subjects were retrospectively undersampled with a regular pattern using skipped phase encoding, leading to ghosts in zero‐filling reconstruction. A complex difference transform along the phase‐encoding direction was applied in image domain to yield sparsified complex‐valued edge maps. These sparse edge maps were used to train a complex‐valued U‐type convolutional neural network (SCU‐Net) for deghosting. A k‐space inverse filtering was performed on the predicted deghosted complex edge maps from SCU‐Net to obtain final complex images. The SCU‐Net was compared with other algorithms including zero‐filling, GRAPPA, RAKI, finite difference complex U‐type convolutional neural network (FDCU‐Net), and CU‐Net, both qualitatively and quantitatively, using such metrics as structural similarity index, peak SNR, and normalized mean square error. Results The SCU‐Net was found to be effective in deghosting aliased edge maps even at high acceleration factors. High‐quality complex images were obtained by performing an inverse filtering on deghosted edge maps. The SCU‐Net compared favorably with other algorithms. Conclusion Using sparsified complex data, SCU‐Net offers higher reconstruction quality for regularly undersampled k‐space data. The proposed method is especially useful for phase‐sensitive MRI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alison完成签到,获得积分10
刚刚
十一完成签到,获得积分10
2秒前
张坤完成签到,获得积分10
2秒前
icey完成签到,获得积分10
3秒前
沉默的盼夏完成签到,获得积分10
4秒前
张坤发布了新的文献求助10
5秒前
qi完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
11秒前
11秒前
要减肥的归尘完成签到,获得积分20
11秒前
xxfsx应助着急的以冬采纳,获得20
12秒前
happy关注了科研通微信公众号
12秒前
026发布了新的文献求助10
12秒前
qi发布了新的文献求助10
13秒前
14秒前
14秒前
Angela完成签到,获得积分10
15秒前
何嘉琪发布了新的文献求助10
16秒前
16秒前
17秒前
赘婿应助无奈的小松鼠采纳,获得10
18秒前
18秒前
JamesPei应助无奈的小松鼠采纳,获得10
18秒前
18秒前
pluto应助无奈的小松鼠采纳,获得10
18秒前
bkagyin应助无奈的小松鼠采纳,获得10
18秒前
18秒前
英姑应助无奈的小松鼠采纳,获得10
18秒前
pluto应助无奈的小松鼠采纳,获得10
18秒前
所所应助无奈的小松鼠采纳,获得10
18秒前
weiyi完成签到,获得积分10
19秒前
瞿霞发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
Rez完成签到,获得积分10
22秒前
NexusExplorer应助limuzi827采纳,获得10
22秒前
爱听歌的冬灵完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304