Improving accelerated MRI by deep learning with sparsified complex data

迭代重建 计算机科学 卷积神经网络 算法 GSM演进的增强数据速率 图像质量 人工智能 模式识别(心理学) 图像(数学)
作者
Zhaoyang Jin,Qing Xiang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (5): 1825-1838 被引量:3
标识
DOI:10.1002/mrm.29556
摘要

Purpose To obtain high‐quality accelerated MR images with complex‐valued reconstruction from undersampled k‐space data. Methods The MRI scans from human subjects were retrospectively undersampled with a regular pattern using skipped phase encoding, leading to ghosts in zero‐filling reconstruction. A complex difference transform along the phase‐encoding direction was applied in image domain to yield sparsified complex‐valued edge maps. These sparse edge maps were used to train a complex‐valued U‐type convolutional neural network (SCU‐Net) for deghosting. A k‐space inverse filtering was performed on the predicted deghosted complex edge maps from SCU‐Net to obtain final complex images. The SCU‐Net was compared with other algorithms including zero‐filling, GRAPPA, RAKI, finite difference complex U‐type convolutional neural network (FDCU‐Net), and CU‐Net, both qualitatively and quantitatively, using such metrics as structural similarity index, peak SNR, and normalized mean square error. Results The SCU‐Net was found to be effective in deghosting aliased edge maps even at high acceleration factors. High‐quality complex images were obtained by performing an inverse filtering on deghosted edge maps. The SCU‐Net compared favorably with other algorithms. Conclusion Using sparsified complex data, SCU‐Net offers higher reconstruction quality for regularly undersampled k‐space data. The proposed method is especially useful for phase‐sensitive MRI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷纸飞机完成签到,获得积分10
刚刚
seeya发布了新的文献求助10
刚刚
1秒前
lx840518发布了新的文献求助20
2秒前
CodeCraft应助枫叶采纳,获得10
2秒前
2秒前
Y奥发布了新的文献求助10
3秒前
RPG完成签到,获得积分10
3秒前
天天快乐应助激情的随阴采纳,获得10
3秒前
赘婿应助紧张的海露采纳,获得10
3秒前
3秒前
4秒前
5秒前
CipherSage应助萧子采纳,获得10
5秒前
Yh发布了新的文献求助30
5秒前
辛勤芷容发布了新的文献求助10
6秒前
美琦完成签到,获得积分10
6秒前
6秒前
QDD发布了新的文献求助10
7秒前
8秒前
丘比特应助HL采纳,获得10
8秒前
8秒前
lyang发布了新的文献求助10
8秒前
8秒前
墨然然完成签到 ,获得积分10
8秒前
开飞机的小羊完成签到,获得积分10
8秒前
Ava应助呀呼采纳,获得10
8秒前
张远幸发布了新的文献求助10
8秒前
我是老大应助听话的白易采纳,获得10
9秒前
Swin完成签到,获得积分10
9秒前
打打应助崔宏玺采纳,获得10
10秒前
10秒前
loong发布了新的文献求助10
11秒前
liuxl完成签到,获得积分10
12秒前
12秒前
爱吃鱼的猫猫完成签到,获得积分10
12秒前
13秒前
cherrain完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351999
求助须知:如何正确求助?哪些是违规求助? 4484908
关于积分的说明 13961093
捐赠科研通 4384639
什么是DOI,文献DOI怎么找? 2409094
邀请新用户注册赠送积分活动 1401552
关于科研通互助平台的介绍 1375095