Improving accelerated MRI by deep learning with sparsified complex data

迭代重建 计算机科学 卷积神经网络 算法 GSM演进的增强数据速率 图像质量 人工智能 模式识别(心理学) 图像(数学)
作者
Zhaoyang Jin,Qing Xiang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (5): 1825-1838 被引量:3
标识
DOI:10.1002/mrm.29556
摘要

Purpose To obtain high‐quality accelerated MR images with complex‐valued reconstruction from undersampled k‐space data. Methods The MRI scans from human subjects were retrospectively undersampled with a regular pattern using skipped phase encoding, leading to ghosts in zero‐filling reconstruction. A complex difference transform along the phase‐encoding direction was applied in image domain to yield sparsified complex‐valued edge maps. These sparse edge maps were used to train a complex‐valued U‐type convolutional neural network (SCU‐Net) for deghosting. A k‐space inverse filtering was performed on the predicted deghosted complex edge maps from SCU‐Net to obtain final complex images. The SCU‐Net was compared with other algorithms including zero‐filling, GRAPPA, RAKI, finite difference complex U‐type convolutional neural network (FDCU‐Net), and CU‐Net, both qualitatively and quantitatively, using such metrics as structural similarity index, peak SNR, and normalized mean square error. Results The SCU‐Net was found to be effective in deghosting aliased edge maps even at high acceleration factors. High‐quality complex images were obtained by performing an inverse filtering on deghosted edge maps. The SCU‐Net compared favorably with other algorithms. Conclusion Using sparsified complex data, SCU‐Net offers higher reconstruction quality for regularly undersampled k‐space data. The proposed method is especially useful for phase‐sensitive MRI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwerhugo发布了新的文献求助10
刚刚
852应助Lina采纳,获得10
1秒前
1秒前
41完成签到,获得积分10
2秒前
北极星完成签到,获得积分10
2秒前
秋颦发布了新的文献求助10
2秒前
小林不熬夜完成签到,获得积分10
2秒前
泯恩仇完成签到,获得积分10
2秒前
科研小白完成签到,获得积分20
2秒前
阔达宝莹完成签到,获得积分20
3秒前
3秒前
sanages发布了新的文献求助10
3秒前
3秒前
123完成签到,获得积分10
4秒前
caochuang完成签到,获得积分10
4秒前
果果完成签到,获得积分10
4秒前
4秒前
斯文败类应助charint采纳,获得10
5秒前
黄心悦完成签到,获得积分10
5秒前
6秒前
slm完成签到,获得积分10
6秒前
善学以致用应助hhan采纳,获得10
7秒前
7秒前
非言墨语完成签到,获得积分10
7秒前
木印天完成签到,获得积分10
7秒前
青青草完成签到,获得积分10
7秒前
韩维完成签到 ,获得积分10
7秒前
NexusExplorer应助刘大大采纳,获得10
7秒前
mickchy完成签到,获得积分10
7秒前
胡茶茶完成签到 ,获得积分10
7秒前
顾矜应助JIE采纳,获得10
8秒前
白桦发布了新的文献求助30
8秒前
TAC发布了新的文献求助10
8秒前
一颗烂番茄完成签到 ,获得积分10
9秒前
TinTin完成签到,获得积分10
9秒前
yxy完成签到,获得积分10
9秒前
源来是洲董完成签到,获得积分10
9秒前
Roy007完成签到,获得积分10
9秒前
时谦先生发布了新的文献求助10
10秒前
秋颦完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256776
求助须知:如何正确求助?哪些是违规求助? 4418917
关于积分的说明 13754171
捐赠科研通 4292127
什么是DOI,文献DOI怎么找? 2355327
邀请新用户注册赠送积分活动 1351803
关于科研通互助平台的介绍 1312558