Improving accelerated MRI by deep learning with sparsified complex data

迭代重建 计算机科学 卷积神经网络 算法 GSM演进的增强数据速率 图像质量 人工智能 模式识别(心理学) 图像(数学)
作者
Zhaoyang Jin,Qing Xiang
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (5): 1825-1838 被引量:3
标识
DOI:10.1002/mrm.29556
摘要

Purpose To obtain high‐quality accelerated MR images with complex‐valued reconstruction from undersampled k‐space data. Methods The MRI scans from human subjects were retrospectively undersampled with a regular pattern using skipped phase encoding, leading to ghosts in zero‐filling reconstruction. A complex difference transform along the phase‐encoding direction was applied in image domain to yield sparsified complex‐valued edge maps. These sparse edge maps were used to train a complex‐valued U‐type convolutional neural network (SCU‐Net) for deghosting. A k‐space inverse filtering was performed on the predicted deghosted complex edge maps from SCU‐Net to obtain final complex images. The SCU‐Net was compared with other algorithms including zero‐filling, GRAPPA, RAKI, finite difference complex U‐type convolutional neural network (FDCU‐Net), and CU‐Net, both qualitatively and quantitatively, using such metrics as structural similarity index, peak SNR, and normalized mean square error. Results The SCU‐Net was found to be effective in deghosting aliased edge maps even at high acceleration factors. High‐quality complex images were obtained by performing an inverse filtering on deghosted edge maps. The SCU‐Net compared favorably with other algorithms. Conclusion Using sparsified complex data, SCU‐Net offers higher reconstruction quality for regularly undersampled k‐space data. The proposed method is especially useful for phase‐sensitive MRI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Winfred发布了新的文献求助10
刚刚
小南发布了新的文献求助10
1秒前
adsifhaidugw发布了新的文献求助30
1秒前
一一一发布了新的文献求助10
2秒前
3秒前
奇怪的柒发布了新的文献求助10
3秒前
阿童木发布了新的文献求助10
3秒前
英俊的铭应助Superan采纳,获得10
5秒前
神的女人发布了新的文献求助10
5秒前
5秒前
5秒前
FAN完成签到,获得积分10
5秒前
Kimen给Kimen的求助进行了留言
6秒前
唐同学发布了新的文献求助10
6秒前
Asuka完成签到 ,获得积分10
6秒前
6秒前
6秒前
Owen应助Winfred采纳,获得10
7秒前
宝贝发布了新的文献求助10
8秒前
Parsec完成签到 ,获得积分10
9秒前
奋斗书白完成签到,获得积分10
10秒前
zml发布了新的文献求助10
10秒前
隐形曼青应助一一一采纳,获得10
10秒前
搞怪芷珍发布了新的文献求助10
11秒前
adsifhaidugw完成签到,获得积分10
11秒前
11秒前
11秒前
corazon发布了新的文献求助10
12秒前
医者发布了新的文献求助10
14秒前
15秒前
tanXX完成签到,获得积分10
16秒前
Hello应助小南采纳,获得10
16秒前
朴素黑猫发布了新的文献求助10
17秒前
星辰大海应助忍冬采纳,获得10
18秒前
阿童木完成签到,获得积分10
19秒前
大模型应助bian采纳,获得10
21秒前
21秒前
扫地888完成签到 ,获得积分10
21秒前
chuzai发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959547
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126213
捐赠科研通 3237706
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871647
科研通“疑难数据库(出版商)”最低求助积分说明 802931