Linear attention coupled Fourier neural operator for simulation of three-dimensional turbulence

湍流 物理 人工神经网络 非线性系统 双谱 瓶颈 各向同性 维数(图论) 快速傅里叶变换 算法 统计物理学 计算机科学 人工智能 机械 数学 光学 光谱密度 电信 量子力学 嵌入式系统 纯数学
作者
Wenhui Peng,Zelong Yuan,Zhijie Li,Jianchun Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (1) 被引量:21
标识
DOI:10.1063/5.0130334
摘要

Modeling three-dimensional (3D) turbulence by neural networks is difficult because 3D turbulence is highly nonlinear with high degrees of freedom and the corresponding simulation is memory-intensive. Recently, the attention mechanism has been shown as a promising approach to boost the performance of neural networks on turbulence simulation. However, the standard self-attention mechanism uses O(n2) time and space with respect to input dimension n, and such quadratic complexity has become the main bottleneck for attention to be applied on 3D turbulence simulation. In this work, we resolve this issue with the concept of a linear attention network. The linear attention approximates the standard attention by adding two linear projections, reducing the overall self-attention complexity from O(n2) to O(n) in both time and space. The linear attention coupled Fourier neural operator (LAFNO) is developed for the simulation of 3D isotropic turbulence and free shear turbulence. Numerical simulations show that the linear attention mechanism provides 40% error reduction at the same level of computational cost, and LAFNO can accurately reconstruct a variety of statistics and instantaneous spatial structures of 3D turbulence. The linear attention method would be helpful for the improvement of neural network models of 3D nonlinear problems involving high-dimensional data in other scientific domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜小瓜完成签到,获得积分10
刚刚
Lucas应助九肆采纳,获得10
1秒前
鱼鱼鱼完成签到 ,获得积分10
2秒前
2秒前
勤恳纸鹤完成签到,获得积分10
3秒前
3秒前
at发布了新的文献求助10
3秒前
Jack80应助冷酷紫南采纳,获得200
8秒前
调皮黑猫完成签到,获得积分10
8秒前
慕青应助天真如松采纳,获得10
9秒前
pl脆脆发布了新的文献求助10
9秒前
10秒前
cocolu应助ibigbird采纳,获得10
11秒前
12秒前
Tobee完成签到,获得积分10
13秒前
14秒前
14秒前
leisure发布了新的文献求助20
14秒前
zhzhzh发布了新的文献求助10
14秒前
xiaoxiao发布了新的文献求助10
16秒前
花蝴蝶发布了新的文献求助10
17秒前
柠檬精完成签到,获得积分10
17秒前
完美世界应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
彭于彦祖应助科研通管家采纳,获得30
20秒前
上官若男应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
20秒前
Owen应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
施昊焱应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
mhl11应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得30
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
施昊焱应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342877
求助须知:如何正确求助?哪些是违规求助? 2969981
关于积分的说明 8642146
捐赠科研通 2649916
什么是DOI,文献DOI怎么找? 1450994
科研通“疑难数据库(出版商)”最低求助积分说明 672032
邀请新用户注册赠送积分活动 661374