A Bi-level optimization model of integrated energy system considering wind power uncertainty

数学优化 稳健优化 稳健性(进化) 最优化问题 可再生能源 储能 电力系统 风力发电 适应性 上下界 计算机科学 控制理论(社会学) 功率(物理) 数学 工程类 经济 基因 数学分析 生物化学 化学 物理 管理 控制(管理) 量子力学 人工智能 电气工程
作者
Wei Fan,Qingbo Tan,Amin Zhang,Liwei Ju,Yuwei Wang,Zhe Yin,Xudong Li
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:202: 973-991 被引量:50
标识
DOI:10.1016/j.renene.2022.12.007
摘要

To cope with the volatility of renewable energy and improve the efficiency of energy storage investment, a bi-level (B-L) optimization model of an integrated energy system (IES) with multiple types of energy storage is established by considering the uncertainty of wind power. The upper-level optimization model considers the lowest configuration cost of energy storage as the objective function and satisfies the constraints of the energy storage configuration. The lower-level optimization model considers the lowest operation cost of the IES as the objective function and satisfies the constraints of the system operation. Second, to overcome the fluctuation problem of wind power output, a robust optimization theory is introduced to describe the uncertainty. Robust coefficients are set to reflect different risk attitudes, which improves the adaptability of the system to uncertainty. Third, the B-L optimization model is solved using the Karush–Kuhn Tucker condition. Finally, a new park is used to implement the simulation. The conclusions are as follows: (1) The economic configuration strategy and optimal operation scheme can be obtained by applying the B-L optimization model, and the upper- and lower-levels interact with each other. The optimal targets of the upper- and lower-level models are −115,848 ¥ and 57,131,102 ¥, respectively. (2) The robust optimization theory improves the ability of a system to deal with risks. Robust optimization theory improves the ability of a system to deal with risks. With an increase in the robustness coefficient, the profit space of the upper-level model increases; however, the operation cost of the lower-level model increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
周新运完成签到,获得积分10
2秒前
雍不斜发布了新的文献求助10
2秒前
2秒前
明理的南风完成签到,获得积分10
3秒前
qcl完成签到,获得积分10
3秒前
安然无恙完成签到,获得积分10
3秒前
半夏完成签到,获得积分10
4秒前
玉鱼儿完成签到 ,获得积分10
4秒前
lf-leo完成签到,获得积分10
5秒前
Hello应助nyfz2002采纳,获得10
5秒前
Dandy发布了新的文献求助10
6秒前
大个应助科研通管家采纳,获得10
7秒前
lizhaoyu应助科研通管家采纳,获得10
7秒前
lizhaoyu应助科研通管家采纳,获得10
7秒前
沛沛完成签到,获得积分10
7秒前
lizhaoyu应助科研通管家采纳,获得10
7秒前
lizhaoyu应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
DijiaXu应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得50
8秒前
ding应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
传奇3应助科研狗采纳,获得10
8秒前
Serendiply完成签到,获得积分10
9秒前
9秒前
dola完成签到,获得积分10
9秒前
kagami发布了新的文献求助10
9秒前
10秒前
忽然之间完成签到,获得积分10
10秒前
11秒前
11秒前
王小平完成签到,获得积分10
12秒前
范先生完成签到,获得积分10
12秒前
jeremy完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027