Strategic Recommendation Algorithms: Overselling and Demarketing Information Designs

计算机科学 算法
作者
Ron Berman,Hangcheng Zhao,Yi Zhu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4301489
摘要

We analyze recommendation algorithms that firms can engineer to strategically provide information to consumers about products with uncertain matches. Monopolists who cannot alter prices can design recommendation algorithms to oversell the product instead of algorithmically recommending perfectly matching products. However, when prices are endogenous or when competition is rampant, firms opt to lower their persuasive claims and instead choose to fully reveal the product's match (i.e., maximize recall and precision). As competition strengthens, the algorithms will shift to demarket their products in order to soften competition. When a platform designs a recommendation algorithm for products sold by third party sellers we find that overselling is not an equilibrium strategy of the platform, but demarketing might be. Overselling entails designing an algorithm that recommends badly fitting products to consumers, which would lower the consumers' ex-ante willingness to pay, and thus increase competition among the sellers and lower the platform's profit. Demarketing, in contrast, softens the competition among sellers from the information perspective, which can be lucrative for the platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴qq发布了新的文献求助10
1秒前
1秒前
墨月发布了新的文献求助10
2秒前
费1发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
斯文败类应助xzh采纳,获得10
4秒前
5秒前
好名字发布了新的文献求助10
5秒前
墙雨轩完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助QYPANG采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
能干巨人应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
轨迹应助科研通管家采纳,获得20
7秒前
斯文败类应助科研通管家采纳,获得200
7秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
南瓜发布了新的文献求助10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Eatanicecube完成签到,获得积分10
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
cjl应助科研通管家采纳,获得30
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
uuu发布了新的文献求助10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667