重复性
稳健性(进化)
计算机科学
软件
设计质量
生化工程
化学
工艺工程
色谱法
数据挖掘
生物化学
基因
工程类
物理化学
粒径
程序设计语言
作者
Xi Chen,Zhao Yang,Yang Xu,Zhe Liu,Yanfang Liu,Yuntao Dai,Shilin Chen
标识
DOI:10.1016/j.jpha.2022.11.011
摘要
Complex systems exist widely, including medicines from natural products, functional foods, and biological samples. The biological activity of complex systems is often the result of the synergistic effect of multiple components. In the quality evaluation of complex samples, multicomponent quantitative analysis (MCQA) is usually needed. To overcome the difficulty in obtaining standard products, scholars have proposed achieving MCQA through the "single standard to determine multiple components (SSDMC)" approach. This method has been used in the determination of multicomponent content in natural source drugs and the analysis of impurities in chemical drugs and has been included in the Chinese Pharmacopoeia. Depending on a convenient (ultra) high-performance liquid chromatography method, how can the repeatability and robustness of the MCQA method be improved? How can the chromatography conditions be optimized to improve the number of quantitative components? How can computer software technology be introduced to improve the efficiency of multicomponent analysis (MCA)? These are the key problems that remain to be solved in practical MCQA. First, this review article summarizes the calculation methods of relative correction factors in the SSDMC approach in the past five years, as well as the method robustness and accuracy evaluation. Second, it also summarizes methods to improve peak capacity and quantitative accuracy in MCA, including column selection and two-dimensional chromatographic analysis technology. Finally, computer software technologies for predicting chromatographic conditions and analytical parameters are introduced, which provides an idea for intelligent method development in MCA. This paper aims to provide methodological ideas for the improvement of complex system analysis, especially MCQA.
科研通智能强力驱动
Strongly Powered by AbleSci AI