Multi-objective optimization of gradient porosity of gas diffusion layer and operation parameters in PEMFC based on recombination optimization compromise strategy

质子交换膜燃料电池 多孔性 材料科学 气体扩散 核工程 化学工程 工艺工程 复合材料 燃料电池 工程类
作者
Xuping Mao,Shengnan Liu,Jiaqi Tan,Haoqin Hu,Chenlei Lu,Dongji Xuan
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (35): 13294-13307 被引量:16
标识
DOI:10.1016/j.ijhydene.2022.12.226
摘要

Proton exchange membrane fuel cell (PEMFC) is one of the most promising power energy sources in the world, and its mechanism research has become the main starting point to improve the comprehensive performance of fuel cells. The gas diffusion layer (GDL) of a proton exchange membrane fuel cell has a significant impact on the overall performance of the cell as an important component in supporting the catalytic layer, collecting the current, conducting the gas and discharging the reaction product water. In this paper, a three-dimensional two-phase isothermal fuel cell model is established based on COMSOL, the gradient porosity of the GDL, thickness of the GDL, operating voltage and working pressure of proton exchange membrane fuel cell are analyzed, the consistency problem of fuel cell performance improvement and life extension that is easily overlooked in numerous studies is found. On this basis, a neural network proxy model is constructed through a large amount of data, and a multi-objective genetic optimization algorithm based on the compromise strategy of recombination optimization is proposed to optimize the uniformity of fuel cell power and oxygen molar concentration distribution, which improves the performance of the fuel cell by 1.45% compared with the power increase when it is not optimized. At the same time, the uniformity of oxygen distribution is improved 10.28%, which makes the oxygen distribution more uniform, prolongs the life of the fuel cell, and fills the gap in the optimization direction of the comprehensive performance of the fuel cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nkuwangkai完成签到,获得积分10
1秒前
研友_LkD29n发布了新的文献求助200
1秒前
Akim应助高兴断秋采纳,获得10
4秒前
6秒前
7秒前
FashionBoy应助lzx采纳,获得10
7秒前
666完成签到,获得积分10
8秒前
斐_应助海月采纳,获得10
9秒前
科研通AI2S应助吁吁采纳,获得10
10秒前
pysa完成签到,获得积分10
10秒前
共享精神应助英俊乌龟采纳,获得10
11秒前
何流畅发布了新的文献求助10
11秒前
Emilia完成签到,获得积分10
11秒前
学者完成签到,获得积分10
12秒前
12秒前
寒冷河马发布了新的文献求助10
14秒前
爆米花应助培a采纳,获得10
14秒前
14秒前
pysa发布了新的文献求助10
15秒前
LAN完成签到,获得积分20
16秒前
16秒前
无水乙醚完成签到,获得积分10
17秒前
鲜于夜白发布了新的文献求助10
18秒前
20秒前
20秒前
NZH发布了新的文献求助10
22秒前
一一完成签到 ,获得积分10
23秒前
英俊乌龟发布了新的文献求助10
24秒前
26秒前
科目三应助奋斗青采纳,获得10
28秒前
乐乐应助jinduanwu采纳,获得10
28秒前
风中青完成签到 ,获得积分10
29秒前
研友_LkD29n完成签到 ,获得积分10
30秒前
NZH完成签到,获得积分10
30秒前
科研通AI2S应助太渊采纳,获得10
30秒前
CodeCraft应助朴素芹菜采纳,获得10
32秒前
赘婿应助NZH采纳,获得10
34秒前
35秒前
fzzzzlucy完成签到,获得积分10
36秒前
37秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180826
求助须知:如何正确求助?哪些是违规求助? 2831048
关于积分的说明 7982721
捐赠科研通 2492898
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954