Machine learning modeling for the prediction of plastic properties in metallic glasses

计算机科学 机器学习 人工智能
作者
Nicolás Amigó,Simón Palominos,Felipe J. Valencia
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:20
标识
DOI:10.1038/s41598-023-27644-x
摘要

Abstract Metallic glasses are one of the most interesting mechanical materials studied in the last years, but as amorphous solids, they differ strongly from their crystalline counterparts. This matter can be addressed with the development and application of predictive techniques capable to describe the plastic regime. Here, machine learning models were employed for the prediction of plastic properties in CuZr metallic glasses. To this aim, 100 different samples were subjected to tensile tests by means of molecular dynamics simulations. A total of 17 materials properties were calculated and explored using statistical analysis. Strong correlations were found for stoichiometry, temperature, structural, and elastic properties with plastic properties. Three regression models were employed for the prediction of six plastic properties. Linear and Ridge regressions delivered the better prediction capability, with coefficients of determination above $$\sim$$ 80% for three plastic properties, whereas Lasso regression rendered lower performance, with coefficients of determination above $$\sim$$ 60% for two plastic properties. Overall, our work shows that molecular dynamics simulations together with machine learning models can provide a framework for the prediction of plastic behavior of complex materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助nanan采纳,获得10
刚刚
平淡思雁完成签到,获得积分10
刚刚
刚刚
小马甲应助可靠板栗采纳,获得10
1秒前
2秒前
2秒前
Lucas应助研友_Z7Xdl8采纳,获得10
3秒前
苗条海瑶发布了新的文献求助10
4秒前
weijian完成签到,获得积分10
4秒前
5秒前
岩鹰发布了新的文献求助10
6秒前
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
7秒前
花开富贵发布了新的文献求助10
8秒前
8秒前
9秒前
weijian发布了新的文献求助10
10秒前
今后应助方方采纳,获得10
10秒前
10秒前
11秒前
WYP关闭了WYP文献求助
11秒前
nanan发布了新的文献求助10
11秒前
13秒前
徐逊发布了新的文献求助10
13秒前
14秒前
黎黎原上草完成签到,获得积分10
15秒前
谷谷发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
18秒前
18秒前
绿色催化发布了新的文献求助10
18秒前
过儿完成签到,获得积分10
19秒前
19秒前
20秒前
心态完成签到,获得积分10
20秒前
yuchuncheng发布了新的文献求助10
20秒前
陈曦发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427