Morphology and Enzyme-Mimicking Activity of Copper Nanoassemblies Regulated by Peptide: Mechanism, Ultrasensitive Assaying of Trypsin, and Screening of Trypsin Inhibitors
胰蛋白酶
化学
肽
生物化学
酶
纳米团簇
有机化学
作者
Yuanyuan Cai,Tao Dong,Xin Zhang,Aihua Liu
出处
期刊:Analytical Chemistry [American Chemical Society] 日期:2022-12-14卷期号:94 (51): 18099-18106被引量:12
To regulate nanostructure synthesis is of crucial importance for developing various applications, including catalysis, bioanalysis, and optical devices. Herein, the morphology and peroxidase (POD)-mimicking activity of peptide-templated copper nanoassemblies (Cu NAs) are regulable with peptide types. The Cu NAs templated with peptide containing single cysteine are uniform nanoclusters with strong POD-like activity. However, the Cu NAs templated with peptide containing two cysteines are fusiform-like with very weak POD-like activity. Unexpectedly, the POD-like activity of Cu NAs templated with peptide containing two cysteines with lysine between the cysteines is significantly enhanced when trypsin is incubated, which is unchanged for the Cu NAs templated with peptide containing two cysteines without lysine between the cysteines. The remarkably enhanced POD-mimicking activity originates from trypsin specifically shearing the peptide bond on the lysine, thereby allowing the aggregated Cu NAs to unravel into individual nanoclusters. Therefore, a robust colorimetric sensing platform was constructed for sensitive and selective detection of trypsin, which showed a linear concentration range of 3–1000 nM and a detection limit of 0.82 nM (S/N = 3). More interestingly, featured by trypsin inhibitor restraining trypsin activity, it enabled us to screen trypsin inhibitors as well. Subsequently, the developed assay was applied to detect trypsin in serum samples with good accuracy and reproducibility. Thus, this strategy shows great potential application in the clinic for diagnosis of trypsin-indicating diseases as well as the screening of trypsin inhibitor-based anti-cancer drugs.