Multitask Multiobjective Deep Reinforcement Learning-Based Computation Offloading Method for Industrial Internet of Things

计算机科学 强化学习 云计算 计算卸载 能源消耗 边缘计算 延迟(音频) 分布式计算 边缘设备 计算 服务质量 计算机网络 人工智能 生物 操作系统 电信 生态学 算法
作者
Jun Cai,Hongtian Fu,Yan Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 1848-1859 被引量:27
标识
DOI:10.1109/jiot.2022.3209987
摘要

Edge computing has emerged as a promising paradigm to deploy computing resources to the network edge. However, most existing computation offloading strategies consider only one objective, including latency, energy consumption, and weighted sum of latency and energy consumption. It is challenging to meet different requirements of the heterogeneous Industrial Internet of Things (IIoT) systems, simultaneously. To address this challenge, a multiagent deep reinforcement learning (MADRL)-based computation offloading method is proposed for cloud–edge–device computing, which aims to meet various requirements of different tasks. In the proposed model, two typical types of tasks are considered: 1) latency-sensitive tasks and 2) energy-sensitive tasks. Each type of task can be executed in one of the three layers, i.e., cloud, edge, or device layer. In addition, in the MADRL model, two agents are defined to make global offloading decisions for the two types of tasks according to the task characteristics and network resource status. The experimental results show that the proposed model can guarantee the quality of service in a heterogeneous IIoT system and achieve better system performance in terms of latency and energy consumption than weighted-sum optimization methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莎拉波贰完成签到,获得积分10
1秒前
1秒前
小饭团子完成签到 ,获得积分10
2秒前
Puffkten完成签到 ,获得积分10
2秒前
liu完成签到,获得积分10
2秒前
3秒前
小大夫完成签到 ,获得积分10
3秒前
科研通AI6应助火星上立果采纳,获得10
3秒前
浮游应助鹏笑采纳,获得10
4秒前
zcl应助科研通管家采纳,获得150
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
zhihui发布了新的文献求助10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
SSNN完成签到,获得积分10
7秒前
独特秋灵应助科研通管家采纳,获得50
7秒前
量子星尘发布了新的文献求助150
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得150
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
幕帆应助科研通管家采纳,获得20
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
zcl应助科研通管家采纳,获得60
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
zcl应助科研通管家采纳,获得150
8秒前
馆长应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
馆长应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
Deng完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
独特秋灵应助科研通管家采纳,获得50
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142300
求助须知:如何正确求助?哪些是违规求助? 4340566
关于积分的说明 13517807
捐赠科研通 4180482
什么是DOI,文献DOI怎么找? 2292477
邀请新用户注册赠送积分活动 1293105
关于科研通互助平台的介绍 1235621