Underwater Object Detection Aided by Image Reconstruction

计算机视觉 水下 计算机科学 人工智能 目标检测 对象(语法) 图像(数学) 迭代重建 计算机图形学(图像) 地质学 模式识别(心理学) 海洋学
作者
Yudong Wang,Jichang Guo,Wanru He
标识
DOI:10.1109/mmsp55362.2022.9949063
摘要

Underwater object detection plays an important role in a variety of marine applications. However, the complexity of the underwater environment (e.g. complex background) and the quality degradation problems (e.g. color deviation) significantly affect the performance of the deep learning-based detector. Many previous works tried to improve the underwater image quality by overcoming the degradation of underwater or designing stronger network structures to enhance the detector feature extraction ability to achieve a higher performance in underwater object detection. However, the former usually inhibits the performance of underwater object detection while the latter does not consider the gap between open-air and underwater domains. This paper presents a novel framework to combine underwater object detection with image reconstruction through a shared backbone and Feature Pyramid Network (FPN). The loss between the reconstructed image and the original image in the reconstruction task is used to make the shared structure have better generalization capability and adaptability to the underwater domain, which can improve the performance of underwater object detection. Moreover, to combine different level features more effectively, UNet-based FPN (UFPN) is proposed to integrate better semantic and texture information obtained from deep and shallow layers, respectively. Extensive experiments and comprehensive evaluation on the URPC2020 dataset show that our approach can lead to 1.4% mAP and 1.0% mAP absolute improvements on RetinaNet and Faster R-CNN baseline with negligible extra overhead. The code is available at https://github.com/BIGWangYuDong/uwtoolbox.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiuxiu完成签到 ,获得积分10
刚刚
zhu ning发布了新的文献求助10
1秒前
明亮的冰颜完成签到,获得积分10
4秒前
慕青应助马迦南采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
彭于彦祖应助科研通管家采纳,获得100
5秒前
李健应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
伯松应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Cassie应助科研通管家采纳,获得10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
bzc229完成签到,获得积分10
7秒前
7秒前
7秒前
saudade完成签到,获得积分10
7秒前
桐桐完成签到,获得积分0
8秒前
8秒前
zhu ning完成签到,获得积分10
8秒前
李德胜发布了新的文献求助10
10秒前
鸣蜩十三完成签到,获得积分10
11秒前
linkin完成签到 ,获得积分10
11秒前
yaya完成签到 ,获得积分10
12秒前
安静的芝麻完成签到,获得积分10
13秒前
嘟嘟发布了新的文献求助10
13秒前
活力听兰发布了新的文献求助10
14秒前
zhzzhz完成签到,获得积分10
14秒前
灰灰12138发布了新的文献求助10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239257
求助须知:如何正确求助?哪些是违规求助? 2884555
关于积分的说明 8234216
捐赠科研通 2552608
什么是DOI,文献DOI怎么找? 1380889
科研通“疑难数据库(出版商)”最低求助积分说明 649099
邀请新用户注册赠送积分活动 624817