Underwater Object Detection Aided by Image Reconstruction

计算机视觉 水下 计算机科学 人工智能 目标检测 对象(语法) 图像(数学) 迭代重建 计算机图形学(图像) 地质学 模式识别(心理学) 海洋学
作者
Yudong Wang,Jichang Guo,Wanru He
标识
DOI:10.1109/mmsp55362.2022.9949063
摘要

Underwater object detection plays an important role in a variety of marine applications. However, the complexity of the underwater environment (e.g. complex background) and the quality degradation problems (e.g. color deviation) significantly affect the performance of the deep learning-based detector. Many previous works tried to improve the underwater image quality by overcoming the degradation of underwater or designing stronger network structures to enhance the detector feature extraction ability to achieve a higher performance in underwater object detection. However, the former usually inhibits the performance of underwater object detection while the latter does not consider the gap between open-air and underwater domains. This paper presents a novel framework to combine underwater object detection with image reconstruction through a shared backbone and Feature Pyramid Network (FPN). The loss between the reconstructed image and the original image in the reconstruction task is used to make the shared structure have better generalization capability and adaptability to the underwater domain, which can improve the performance of underwater object detection. Moreover, to combine different level features more effectively, UNet-based FPN (UFPN) is proposed to integrate better semantic and texture information obtained from deep and shallow layers, respectively. Extensive experiments and comprehensive evaluation on the URPC2020 dataset show that our approach can lead to 1.4% mAP and 1.0% mAP absolute improvements on RetinaNet and Faster R-CNN baseline with negligible extra overhead. The code is available at https://github.com/BIGWangYuDong/uwtoolbox.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晚风发布了新的文献求助10
刚刚
zjuroc发布了新的文献求助20
1秒前
坦率的松发布了新的文献求助10
1秒前
xiaokai完成签到,获得积分10
1秒前
1秒前
1秒前
Czy完成签到,获得积分10
1秒前
2秒前
小满完成签到,获得积分10
2秒前
文忉嫣完成签到,获得积分10
2秒前
2秒前
3秒前
落后秋柳完成签到,获得积分20
3秒前
Akim应助zz采纳,获得10
3秒前
4秒前
三九发布了新的文献求助10
5秒前
科研通AI5应助czq采纳,获得30
5秒前
6秒前
6秒前
6秒前
坦率的松完成签到,获得积分10
6秒前
传奇3应助贤惠的正豪采纳,获得10
7秒前
111发布了新的文献求助10
7秒前
三寒鸦完成签到,获得积分10
7秒前
小木棉发布了新的文献求助10
7秒前
7秒前
少年郎完成签到,获得积分20
8秒前
CipherSage应助123lura采纳,获得10
8秒前
七七完成签到,获得积分10
8秒前
科研通AI2S应助小余采纳,获得10
8秒前
苹果骑士完成签到,获得积分10
8秒前
8秒前
shi hui应助jbhb采纳,获得10
9秒前
9秒前
9秒前
JUSTs0so发布了新的文献求助10
9秒前
长夜变清早完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762