A ConvNet for the 2020s

变压器 计算机科学 人工智能 分割 可扩展性 目标检测 机器学习 图像分割 计算机视觉 模式识别(心理学) 工程类 电气工程 数据库 电压
作者
Zhuang Liu,Hanzi Mao,Chao-Yuan Wu,Christoph Feichtenhofer,Trevor Darrell,Saining Xie
标识
DOI:10.1109/cvpr52688.2022.01167
摘要

The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
思源应助烫的汤采纳,获得10
4秒前
小孙发布了新的文献求助10
5秒前
6秒前
淡淡樱桃发布了新的文献求助10
9秒前
Peach完成签到,获得积分10
11秒前
西门戆戆发布了新的文献求助10
11秒前
17秒前
中和皇极应助zzbbzz采纳,获得10
19秒前
思源应助麦子采纳,获得10
20秒前
21秒前
yhl666发布了新的文献求助10
23秒前
杳鸢应助小孙采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
24秒前
wanci应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
cdercder应助科研通管家采纳,获得30
24秒前
hhhblabla应助科研通管家采纳,获得20
24秒前
hhhblabla应助科研通管家采纳,获得20
24秒前
24秒前
丰知然应助科研通管家采纳,获得10
24秒前
丰知然应助科研通管家采纳,获得10
24秒前
ceeray23应助科研通管家采纳,获得10
24秒前
丰知然应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
25秒前
丰知然应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
丰知然应助科研通管家采纳,获得10
25秒前
ceeray23应助科研通管家采纳,获得10
25秒前
青黛发布了新的文献求助10
26秒前
27秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693