Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning

接收机工作特性 随机森林 计算生物学 支持向量机 列线图 基因 微阵列分析技术 免疫系统 特征选择 微阵列 系统性红斑狼疮 基因共表达网络 生物 生物信息学 机器学习 计算机科学 基因表达 免疫学 医学 遗传学 肿瘤科 基因本体论 疾病 病理
作者
Chunjiang Liu,Yufei Zhou,Yue Zhou,Xiaoqi Tang,Liming Tang,Jiajia Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106388-106388 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.106388
摘要

Systemic lupus erythematosus (SLE) has become a major public health problem over the years, and atherosclerosis (AS) is one of the main complications of SLE associated with serious cardiovascular consequences in this patient population. The present study aimed to identify potential biomarkers for SLE patients with AS.Five microarray datasets (GSE50772, GSE81622, GSE100927, GSE28829, GSE37356) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in AS. Weighted gene coexpression network analysis (WGCNA) was used to identify significant module genes associated with SLE. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (Lasso, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and random forest) were applied to identify hub genes. Subsequently, we generated a nomogram and receiver operating characteristic curve (ROC) for predicting the risk of AS in SLE patients. Finally, immune cell infiltrations were analyzed, and Consensus Cluster Analysis was conducted based on Single Sample Gene Set Enrichment Analysis (ssGSEA) scores.Five hub genes (SPI1, MMP9, C1QA, CX3CR1, and MNDA) were identified and used to establish a nomogram that yielded a high predictive performance (area under the curve 0.900-0.981). Dysregulated immune cell infiltrations were found in AS, with positive correlations with the five hub genes. Consensus clustering showed that the optimal number of subtypes was 3. Compared to subtypes A and B, subtype C presented higher expression of the five hub genes, immune cell infiltration levels and immune checkpoint expression.Our study systematically identified five candidate hub genes (SPI1, MMP9, C1QA, CX3CR1, MNDA) and established a nomogram that could predict the risk of AS with SLE using various bioinformatic analyses and machine learning algorithms. Our findings provide the foothold for future studies on potential crucial genes for AS in SLE patients. Additionally, the dysregulated immune cell proportions and immune checkpoint expressions in AS with SLE were identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
三家分晋发布了新的文献求助10
1秒前
33发布了新的文献求助10
1秒前
小蘑菇应助zyyao采纳,获得10
2秒前
8899发布了新的文献求助10
2秒前
实验员完成签到,获得积分10
2秒前
Lucas应助炙热雅琴采纳,获得10
3秒前
rr完成签到,获得积分10
4秒前
小吴同学发布了新的文献求助10
4秒前
Liquid发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
酷炫迎波完成签到,获得积分10
8秒前
Lucas应助空勒采纳,获得30
8秒前
8秒前
9秒前
风笙完成签到,获得积分10
9秒前
9秒前
9秒前
宗剑发布了新的文献求助10
10秒前
10秒前
吴文婧完成签到,获得积分10
10秒前
CipherSage应助一一采纳,获得10
10秒前
三家分晋完成签到,获得积分20
11秒前
11秒前
DONG完成签到,获得积分10
12秒前
吃鱼完成签到 ,获得积分10
13秒前
走走发布了新的文献求助10
13秒前
张磊完成签到,获得积分10
14秒前
Orange应助无私的世界采纳,获得10
14秒前
科研通AI2S应助勤奋海燕采纳,获得10
14秒前
liu66发布了新的文献求助10
15秒前
大西瓜发布了新的文献求助10
15秒前
17秒前
17秒前
mmyhn发布了新的文献求助10
18秒前
18秒前
宝海青完成签到,获得积分10
20秒前
21秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501343
求助须知:如何正确求助?哪些是违规求助? 4597644
关于积分的说明 14460294
捐赠科研通 4531192
什么是DOI,文献DOI怎么找? 2483173
邀请新用户注册赠送积分活动 1466737
关于科研通互助平台的介绍 1439386