Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning

接收机工作特性 随机森林 计算生物学 支持向量机 列线图 基因 微阵列分析技术 免疫系统 特征选择 微阵列 系统性红斑狼疮 基因共表达网络 生物 生物信息学 机器学习 计算机科学 基因表达 免疫学 医学 遗传学 肿瘤科 基因本体论 疾病 病理
作者
Chunjiang Liu,Yufei Zhou,Yue Zhou,Xiaoqi Tang,Liming Tang,Jiajia Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106388-106388 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.106388
摘要

Systemic lupus erythematosus (SLE) has become a major public health problem over the years, and atherosclerosis (AS) is one of the main complications of SLE associated with serious cardiovascular consequences in this patient population. The present study aimed to identify potential biomarkers for SLE patients with AS.Five microarray datasets (GSE50772, GSE81622, GSE100927, GSE28829, GSE37356) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in AS. Weighted gene coexpression network analysis (WGCNA) was used to identify significant module genes associated with SLE. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (Lasso, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and random forest) were applied to identify hub genes. Subsequently, we generated a nomogram and receiver operating characteristic curve (ROC) for predicting the risk of AS in SLE patients. Finally, immune cell infiltrations were analyzed, and Consensus Cluster Analysis was conducted based on Single Sample Gene Set Enrichment Analysis (ssGSEA) scores.Five hub genes (SPI1, MMP9, C1QA, CX3CR1, and MNDA) were identified and used to establish a nomogram that yielded a high predictive performance (area under the curve 0.900-0.981). Dysregulated immune cell infiltrations were found in AS, with positive correlations with the five hub genes. Consensus clustering showed that the optimal number of subtypes was 3. Compared to subtypes A and B, subtype C presented higher expression of the five hub genes, immune cell infiltration levels and immune checkpoint expression.Our study systematically identified five candidate hub genes (SPI1, MMP9, C1QA, CX3CR1, MNDA) and established a nomogram that could predict the risk of AS with SLE using various bioinformatic analyses and machine learning algorithms. Our findings provide the foothold for future studies on potential crucial genes for AS in SLE patients. Additionally, the dysregulated immune cell proportions and immune checkpoint expressions in AS with SLE were identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助smh采纳,获得10
刚刚
加减乘除完成签到,获得积分10
刚刚
zhukeqinag发布了新的文献求助10
1秒前
皮皮虾完成签到 ,获得积分10
2秒前
Aurora完成签到 ,获得积分10
2秒前
bkagyin应助陈曦读研版采纳,获得10
3秒前
asdmwhx完成签到,获得积分10
3秒前
qyzhu完成签到,获得积分10
6秒前
gaga完成签到,获得积分10
7秒前
GingerF应助xzy998采纳,获得50
8秒前
SherlockJia完成签到,获得积分10
9秒前
小小怪完成签到 ,获得积分10
9秒前
小城故事完成签到,获得积分10
9秒前
活泼的冬瓜完成签到,获得积分10
9秒前
善善完成签到 ,获得积分10
11秒前
研友_5Z4ZA5完成签到,获得积分10
11秒前
Q清风慕竹完成签到,获得积分10
12秒前
科研通AI6应助丘奇采纳,获得10
12秒前
badgerwithfisher完成签到,获得积分10
13秒前
可玩性完成签到 ,获得积分10
17秒前
行星一只兔完成签到 ,获得积分10
17秒前
shanshan完成签到,获得积分10
18秒前
siqilinwillbephd完成签到,获得积分10
19秒前
陈咪咪完成签到,获得积分10
21秒前
liujianxin发布了新的文献求助10
22秒前
得了MVP完成签到,获得积分10
23秒前
瘦瘦柠檬完成签到,获得积分20
24秒前
叶落无痕、完成签到,获得积分10
25秒前
123完成签到 ,获得积分10
29秒前
炳灿完成签到 ,获得积分10
29秒前
唯为完成签到,获得积分10
30秒前
jiuzhege完成签到 ,获得积分10
30秒前
30秒前
梧桐完成签到 ,获得积分10
30秒前
Akim应助konghusheng采纳,获得10
33秒前
学习完成签到 ,获得积分10
33秒前
34秒前
乐乐妈完成签到,获得积分10
34秒前
阳佟若剑完成签到,获得积分10
35秒前
会飞的猪完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256332
求助须知:如何正确求助?哪些是违规求助? 4418639
关于积分的说明 13752945
捐赠科研通 4291811
什么是DOI,文献DOI怎么找? 2355152
邀请新用户注册赠送积分活动 1351564
关于科研通互助平台的介绍 1312264