Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning

接收机工作特性 随机森林 计算生物学 支持向量机 列线图 基因 微阵列分析技术 免疫系统 特征选择 微阵列 系统性红斑狼疮 基因共表达网络 生物 生物信息学 机器学习 计算机科学 基因表达 免疫学 医学 遗传学 肿瘤科 基因本体论 疾病 病理
作者
Chunjiang Liu,Yufei Zhou,Yue Zhou,Xiaoqi Tang,Liming Tang,Jiajia Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106388-106388 被引量:16
标识
DOI:10.1016/j.compbiomed.2022.106388
摘要

Systemic lupus erythematosus (SLE) has become a major public health problem over the years, and atherosclerosis (AS) is one of the main complications of SLE associated with serious cardiovascular consequences in this patient population. The present study aimed to identify potential biomarkers for SLE patients with AS.Five microarray datasets (GSE50772, GSE81622, GSE100927, GSE28829, GSE37356) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in AS. Weighted gene coexpression network analysis (WGCNA) was used to identify significant module genes associated with SLE. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (Lasso, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and random forest) were applied to identify hub genes. Subsequently, we generated a nomogram and receiver operating characteristic curve (ROC) for predicting the risk of AS in SLE patients. Finally, immune cell infiltrations were analyzed, and Consensus Cluster Analysis was conducted based on Single Sample Gene Set Enrichment Analysis (ssGSEA) scores.Five hub genes (SPI1, MMP9, C1QA, CX3CR1, and MNDA) were identified and used to establish a nomogram that yielded a high predictive performance (area under the curve 0.900-0.981). Dysregulated immune cell infiltrations were found in AS, with positive correlations with the five hub genes. Consensus clustering showed that the optimal number of subtypes was 3. Compared to subtypes A and B, subtype C presented higher expression of the five hub genes, immune cell infiltration levels and immune checkpoint expression.Our study systematically identified five candidate hub genes (SPI1, MMP9, C1QA, CX3CR1, MNDA) and established a nomogram that could predict the risk of AS with SLE using various bioinformatic analyses and machine learning algorithms. Our findings provide the foothold for future studies on potential crucial genes for AS in SLE patients. Additionally, the dysregulated immune cell proportions and immune checkpoint expressions in AS with SLE were identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋蚓完成签到,获得积分10
4秒前
6秒前
汉堡包应助开心采纳,获得10
8秒前
8秒前
充电宝应助粉红三倍速采纳,获得10
9秒前
Mercury2024发布了新的文献求助10
11秒前
XIL发布了新的文献求助10
11秒前
12秒前
Darren发布了新的文献求助50
13秒前
lihongchi完成签到,获得积分10
13秒前
烁果累累完成签到 ,获得积分10
14秒前
15秒前
15秒前
19秒前
鹏程万里发布了新的文献求助10
20秒前
20秒前
Lionnn完成签到 ,获得积分10
21秒前
23秒前
憨憨发布了新的文献求助10
25秒前
111111完成签到,获得积分10
25秒前
张小龙完成签到 ,获得积分10
26秒前
27秒前
27秒前
可爱的函函应助清爽聋五采纳,获得10
27秒前
加菲丰丰完成签到,获得积分0
27秒前
30秒前
sophieCCM0302发布了新的文献求助10
33秒前
星辰大海应助竹外桃花采纳,获得10
34秒前
小秃兄完成签到,获得积分10
34秒前
35秒前
and999完成签到,获得积分10
36秒前
38秒前
小马到处跑完成签到,获得积分10
39秒前
尼莫发布了新的文献求助10
41秒前
sophieCCM0302完成签到,获得积分10
42秒前
wlz发布了新的文献求助10
44秒前
45秒前
桐桐应助温柔半梦采纳,获得10
45秒前
46秒前
gege完成签到 ,获得积分10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023