Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning

接收机工作特性 随机森林 计算生物学 支持向量机 列线图 基因 微阵列分析技术 免疫系统 特征选择 微阵列 系统性红斑狼疮 基因共表达网络 生物 生物信息学 机器学习 计算机科学 基因表达 免疫学 医学 遗传学 肿瘤科 基因本体论 疾病 病理
作者
Chunjiang Liu,Yufei Zhou,Yue Zhou,Xiaoqi Tang,Liming Tang,Jiajia Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106388-106388 被引量:27
标识
DOI:10.1016/j.compbiomed.2022.106388
摘要

Systemic lupus erythematosus (SLE) has become a major public health problem over the years, and atherosclerosis (AS) is one of the main complications of SLE associated with serious cardiovascular consequences in this patient population. The present study aimed to identify potential biomarkers for SLE patients with AS.Five microarray datasets (GSE50772, GSE81622, GSE100927, GSE28829, GSE37356) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in AS. Weighted gene coexpression network analysis (WGCNA) was used to identify significant module genes associated with SLE. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (Lasso, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and random forest) were applied to identify hub genes. Subsequently, we generated a nomogram and receiver operating characteristic curve (ROC) for predicting the risk of AS in SLE patients. Finally, immune cell infiltrations were analyzed, and Consensus Cluster Analysis was conducted based on Single Sample Gene Set Enrichment Analysis (ssGSEA) scores.Five hub genes (SPI1, MMP9, C1QA, CX3CR1, and MNDA) were identified and used to establish a nomogram that yielded a high predictive performance (area under the curve 0.900-0.981). Dysregulated immune cell infiltrations were found in AS, with positive correlations with the five hub genes. Consensus clustering showed that the optimal number of subtypes was 3. Compared to subtypes A and B, subtype C presented higher expression of the five hub genes, immune cell infiltration levels and immune checkpoint expression.Our study systematically identified five candidate hub genes (SPI1, MMP9, C1QA, CX3CR1, MNDA) and established a nomogram that could predict the risk of AS with SLE using various bioinformatic analyses and machine learning algorithms. Our findings provide the foothold for future studies on potential crucial genes for AS in SLE patients. Additionally, the dysregulated immune cell proportions and immune checkpoint expressions in AS with SLE were identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责月光完成签到,获得积分10
1秒前
千空发布了新的文献求助10
1秒前
1秒前
3秒前
4秒前
Mine发布了新的文献求助10
4秒前
WL发布了新的文献求助10
4秒前
5秒前
米九完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
8秒前
充电宝应助linmo采纳,获得10
8秒前
8秒前
8秒前
abcc1234发布了新的文献求助10
9秒前
9秒前
Kenzonvay发布了新的文献求助10
11秒前
许宗蓥完成签到,获得积分10
11秒前
chengzi发布了新的文献求助10
11秒前
HOXXXiii完成签到,获得积分10
11秒前
tonight发布了新的文献求助10
11秒前
Jenaloe发布了新的文献求助10
12秒前
赵佳璐发布了新的文献求助10
12秒前
SciGPT应助ihtw采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
17秒前
FashionBoy应助ln采纳,获得10
17秒前
18秒前
Mobius发布了新的文献求助10
19秒前
stream发布了新的文献求助10
20秒前
20秒前
Jaikaran发布了新的文献求助30
20秒前
lina发布了新的文献求助10
21秒前
ty12390发布了新的文献求助10
22秒前
Jenaloe完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089