已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning

接收机工作特性 随机森林 计算生物学 支持向量机 列线图 基因 微阵列分析技术 免疫系统 特征选择 微阵列 系统性红斑狼疮 基因共表达网络 生物 生物信息学 机器学习 计算机科学 基因表达 免疫学 医学 遗传学 肿瘤科 基因本体论 疾病 病理
作者
Chunjiang Liu,Yufei Zhou,Yue Zhou,Xiaoqi Tang,Liming Tang,Jiajia Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106388-106388 被引量:31
标识
DOI:10.1016/j.compbiomed.2022.106388
摘要

Systemic lupus erythematosus (SLE) has become a major public health problem over the years, and atherosclerosis (AS) is one of the main complications of SLE associated with serious cardiovascular consequences in this patient population. The present study aimed to identify potential biomarkers for SLE patients with AS.Five microarray datasets (GSE50772, GSE81622, GSE100927, GSE28829, GSE37356) were downloaded from the NCBI Gene Expression Omnibus database. The Limma package was used to identify differentially expressed genes (DEGs) in AS. Weighted gene coexpression network analysis (WGCNA) was used to identify significant module genes associated with SLE. Functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (Lasso, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and random forest) were applied to identify hub genes. Subsequently, we generated a nomogram and receiver operating characteristic curve (ROC) for predicting the risk of AS in SLE patients. Finally, immune cell infiltrations were analyzed, and Consensus Cluster Analysis was conducted based on Single Sample Gene Set Enrichment Analysis (ssGSEA) scores.Five hub genes (SPI1, MMP9, C1QA, CX3CR1, and MNDA) were identified and used to establish a nomogram that yielded a high predictive performance (area under the curve 0.900-0.981). Dysregulated immune cell infiltrations were found in AS, with positive correlations with the five hub genes. Consensus clustering showed that the optimal number of subtypes was 3. Compared to subtypes A and B, subtype C presented higher expression of the five hub genes, immune cell infiltration levels and immune checkpoint expression.Our study systematically identified five candidate hub genes (SPI1, MMP9, C1QA, CX3CR1, MNDA) and established a nomogram that could predict the risk of AS with SLE using various bioinformatic analyses and machine learning algorithms. Our findings provide the foothold for future studies on potential crucial genes for AS in SLE patients. Additionally, the dysregulated immune cell proportions and immune checkpoint expressions in AS with SLE were identified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
午盏完成签到,获得积分10
5秒前
Youngman完成签到,获得积分10
6秒前
zizi完成签到 ,获得积分10
7秒前
7秒前
向南发布了新的文献求助10
7秒前
你好完成签到 ,获得积分10
7秒前
8秒前
Hello应助向南采纳,获得10
13秒前
酷波er应助抱抱龙采纳,获得10
14秒前
Natrual完成签到 ,获得积分10
14秒前
y13333完成签到,获得积分10
14秒前
Hello应助Laputa采纳,获得10
15秒前
科研通AI6应助小苹果采纳,获得10
15秒前
17秒前
江東完成签到 ,获得积分10
17秒前
着急的猴完成签到 ,获得积分10
18秒前
殷琛发布了新的文献求助10
19秒前
姜姜发布了新的文献求助10
21秒前
三石呦423发布了新的文献求助50
21秒前
21秒前
第二支羽毛完成签到,获得积分10
21秒前
22秒前
22秒前
抱抱龙发布了新的文献求助10
25秒前
碧蓝丹烟完成签到 ,获得积分10
26秒前
文静的海完成签到,获得积分10
26秒前
Yi羿完成签到 ,获得积分10
29秒前
ll完成签到 ,获得积分10
30秒前
高贵书兰完成签到 ,获得积分10
30秒前
30秒前
852应助学术蝗虫采纳,获得10
31秒前
六幺七完成签到 ,获得积分10
31秒前
32秒前
不与仙同完成签到 ,获得积分10
34秒前
xmsyq完成签到 ,获得积分10
35秒前
37秒前
科研通AI6应助三石呦423采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627596
求助须知:如何正确求助?哪些是违规求助? 4714216
关于积分的说明 14962790
捐赠科研通 4785168
什么是DOI,文献DOI怎么找? 2555019
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476819