Analysis of load-bearing capacity factors of textile-reinforced mortar using multilayer perceptron and explainable artificial intelligence

灰浆 多层感知器 承载力 结构工程 极限抗拉强度 材料科学 梁(结构) 织物 纤维 抗弯强度 计算机科学 复合材料 人工神经网络 人工智能 工程类
作者
Young-Jae Song,Kwangsu Kim,Seunghee Park,Sun-Kyu Park,Jong-Ho Park
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:363: 129560-129560 被引量:3
标识
DOI:10.1016/j.conbuildmat.2022.129560
摘要

With the aging of reinforced concrete structures, textiles, which are fiber composite materials, have been gaining attention for structural strengthening and replacement of steel reinforcements. The application of textile-reinforced mortar (TRM) is one method of strengthening structures using textiles. Various factors affect the performance when structures are strengthened with TRM; it is affected by the physical properties of the material, such as tensile strength and elongation, and external factors, which vary depending on the design condition, such as textile geometry and strengthening method. Therefore, it is necessary to develop an accurate method that considers the influence of various external factors for evaluating the load-bearing capacity in flexural of TRM-strengthened RC beam. A total of 100 experimental data were learned using a multilayer perceptron (MLP) deep learning model with 24 features, which were analyzed using explainable artificial intelligence, shapley additive explanations (SHAP). The MLP model exhibited a high performance, with a coefficient of determination of 0.9677, indicating the complex correlation between the given features. Regarding the influence of external factors on yield strength, the weft fiber spacing had a negative impact with high influence, and the warp fiber spacing was found to have a very low effect. The anchorage and the number of layers seemed to have a positive impact; however, the effect was small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助酷炫的虔纹采纳,获得10
刚刚
留胡子的小虾米完成签到,获得积分10
刚刚
Jammie应助乐观寒珊采纳,获得20
1秒前
wanjingwan完成签到 ,获得积分10
2秒前
pms完成签到,获得积分10
2秒前
一棵草完成签到,获得积分10
2秒前
梨涡远点啊完成签到,获得积分10
2秒前
iNk应助飘逸的青雪采纳,获得20
3秒前
zero完成签到,获得积分10
5秒前
6秒前
Akim应助fubq0321采纳,获得10
7秒前
kannar完成签到,获得积分10
8秒前
润润轩轩完成签到 ,获得积分10
9秒前
笨笨凡松完成签到,获得积分10
9秒前
Kelly完成签到,获得积分10
10秒前
11秒前
飞鱼完成签到,获得积分10
11秒前
nyfz2002发布了新的文献求助10
12秒前
斯文的天奇完成签到 ,获得积分10
13秒前
13秒前
ccc完成签到,获得积分10
14秒前
淡定的安白完成签到,获得积分10
14秒前
Wendy发布了新的文献求助10
14秒前
不过尔尔发布了新的文献求助10
15秒前
和谐续完成签到 ,获得积分10
15秒前
15秒前
房梦寒完成签到,获得积分10
16秒前
16秒前
李哈哈发布了新的文献求助10
16秒前
zhugao完成签到,获得积分10
16秒前
打打应助15098762335采纳,获得10
17秒前
MHCL完成签到 ,获得积分10
17秒前
淋湿的雨完成签到 ,获得积分20
18秒前
柳煜城完成签到,获得积分10
19秒前
XXXX完成签到,获得积分10
19秒前
一只东北鸟完成签到 ,获得积分10
19秒前
drbrianlau完成签到,获得积分10
19秒前
drrobins完成签到 ,获得积分10
20秒前
周一一发布了新的文献求助10
20秒前
周星星完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890