Self-Adaptive Sampling Based Per-Flow Traffic Measurement

计算机科学 采样(信号处理) 估计员 实时计算 炸薯条 互联网流量 吞吐量 流量(数学) 互联网 电信 统计 无线 几何学 数学 探测器 万维网
作者
Yang Du,He Huang,Yu-E Sun,Zhiying Tang,Guoju Gao,Xiaocan Wu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1010-1025
标识
DOI:10.1109/tnet.2022.3212066
摘要

Per-flow traffic measurement in the high-speed network plays an important role in many practical applications. Due to the limited on-chip memory and the mismatch between off-chip memory speed and line rate, sampling-based methods select and forward a part of flow traffic to off-chip memory, which complements sketch-based solutions in estimation accuracy and online query support. However, most current work uses the same sampling probability for all flows, leading to the waste in storage and communication resources. In practice, different flows often require different sampling rates to meet the same accuracy constraint. This paper presents self-adaptive sampling, a framework to sample each flow with a probability adapted to flow size/spread. Then we propose three algorithms, SAS-LC, SAS-LOG, and SAS-HYB. SAS-LC and SAS-LOG are geared towards per-flow spread estimation and per-flow size estimation by using different compression functions. SAS-HYB combines the advantages of SAS-LC and SAS-LOG, showing higher efficiency when both small flows and large flows are interested. We implement our estimators in hardware using NetFPGA. Experimental results based on real Internet traces show that, compared to the state-of-the-art in per-flow spread estimation, SAS-LC can save around 10% on-chip space and reduce up to 40% communication cost for large flows. In per-flow size estimation, SAS-LOG can save 40% on-chip space and reduce up to 96% communication costs for large flows. Moreover, SAS-HYB’s on-chip memory usage will not be larger than SAS-LC or SAS-LOG and can save up to 19% on-chip space than SAS-LOG when both small flows and large flows are interested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助starts采纳,获得10
1秒前
YuenYuen完成签到,获得积分10
1秒前
儒雅无剑发布了新的文献求助10
1秒前
松山小吏完成签到,获得积分10
1秒前
1秒前
AAA苦读发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
土豪的雅柔完成签到,获得积分10
3秒前
ddd发布了新的文献求助10
3秒前
简单的听寒完成签到,获得积分10
3秒前
3秒前
4秒前
科研通AI2S应助Haru采纳,获得30
4秒前
黑章鱼保罗完成签到,获得积分10
4秒前
文静谷秋完成签到,获得积分10
5秒前
Ttttt发布了新的文献求助10
6秒前
传奇3应助姚序东采纳,获得10
6秒前
6秒前
Sy发布了新的文献求助10
6秒前
DingShicong完成签到 ,获得积分10
6秒前
7秒前
聂落雁发布了新的文献求助10
7秒前
陈木子发布了新的文献求助10
7秒前
7秒前
朱子完成签到,获得积分10
8秒前
豌豆米应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
Rae完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
李庭福发布了新的文献求助10
9秒前
ZX801发布了新的文献求助10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
帅气的绿凝完成签到,获得积分10
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
ouyang发布了新的文献求助10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313