Self-Adaptive Sampling Based Per-Flow Traffic Measurement

计算机科学 采样(信号处理) 估计员 实时计算 炸薯条 互联网流量 吞吐量 流量(数学) 互联网 电信 统计 无线 几何学 数学 探测器 万维网
作者
Yang Du,He Huang,Yu-E Sun,Zhiying Tang,Guoju Gao,Xiaocan Wu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1010-1025
标识
DOI:10.1109/tnet.2022.3212066
摘要

Per-flow traffic measurement in the high-speed network plays an important role in many practical applications. Due to the limited on-chip memory and the mismatch between off-chip memory speed and line rate, sampling-based methods select and forward a part of flow traffic to off-chip memory, which complements sketch-based solutions in estimation accuracy and online query support. However, most current work uses the same sampling probability for all flows, leading to the waste in storage and communication resources. In practice, different flows often require different sampling rates to meet the same accuracy constraint. This paper presents self-adaptive sampling, a framework to sample each flow with a probability adapted to flow size/spread. Then we propose three algorithms, SAS-LC, SAS-LOG, and SAS-HYB. SAS-LC and SAS-LOG are geared towards per-flow spread estimation and per-flow size estimation by using different compression functions. SAS-HYB combines the advantages of SAS-LC and SAS-LOG, showing higher efficiency when both small flows and large flows are interested. We implement our estimators in hardware using NetFPGA. Experimental results based on real Internet traces show that, compared to the state-of-the-art in per-flow spread estimation, SAS-LC can save around 10% on-chip space and reduce up to 40% communication cost for large flows. In per-flow size estimation, SAS-LOG can save 40% on-chip space and reduce up to 96% communication costs for large flows. Moreover, SAS-HYB’s on-chip memory usage will not be larger than SAS-LC or SAS-LOG and can save up to 19% on-chip space than SAS-LOG when both small flows and large flows are interested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张景灿完成签到,获得积分10
刚刚
蘇q完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
nous完成签到,获得积分10
3秒前
11完成签到,获得积分10
4秒前
西西完成签到,获得积分10
4秒前
4秒前
Wang_ZiMo发布了新的文献求助10
5秒前
海绵宝宝的做饭铲完成签到,获得积分10
5秒前
5秒前
yuuka发布了新的文献求助10
6秒前
Wang驳回了李健应助
6秒前
微笑笑卉发布了新的文献求助10
7秒前
科研通AI6应助狂野大雄鹰采纳,获得10
9秒前
zwangxia完成签到,获得积分10
10秒前
11秒前
Xuz完成签到 ,获得积分10
12秒前
谢123完成签到 ,获得积分10
12秒前
12秒前
hahage完成签到,获得积分10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
tcf应助科研通管家采纳,获得10
14秒前
源源完成签到 ,获得积分10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得30
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
natmed应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
无花果应助paz_1010采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379192
求助须知:如何正确求助?哪些是违规求助? 4503605
关于积分的说明 14016048
捐赠科研通 4412336
什么是DOI,文献DOI怎么找? 2423761
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394188