Self-Adaptive Sampling Based Per-Flow Traffic Measurement

计算机科学 采样(信号处理) 估计员 实时计算 炸薯条 互联网流量 吞吐量 流量(数学) 互联网 电信 统计 无线 几何学 数学 探测器 万维网
作者
Yang Du,He Huang,Yu-E Sun,Zhiying Tang,Guoju Gao,Xiaocan Wu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (3): 1010-1025
标识
DOI:10.1109/tnet.2022.3212066
摘要

Per-flow traffic measurement in the high-speed network plays an important role in many practical applications. Due to the limited on-chip memory and the mismatch between off-chip memory speed and line rate, sampling-based methods select and forward a part of flow traffic to off-chip memory, which complements sketch-based solutions in estimation accuracy and online query support. However, most current work uses the same sampling probability for all flows, leading to the waste in storage and communication resources. In practice, different flows often require different sampling rates to meet the same accuracy constraint. This paper presents self-adaptive sampling, a framework to sample each flow with a probability adapted to flow size/spread. Then we propose three algorithms, SAS-LC, SAS-LOG, and SAS-HYB. SAS-LC and SAS-LOG are geared towards per-flow spread estimation and per-flow size estimation by using different compression functions. SAS-HYB combines the advantages of SAS-LC and SAS-LOG, showing higher efficiency when both small flows and large flows are interested. We implement our estimators in hardware using NetFPGA. Experimental results based on real Internet traces show that, compared to the state-of-the-art in per-flow spread estimation, SAS-LC can save around 10% on-chip space and reduce up to 40% communication cost for large flows. In per-flow size estimation, SAS-LOG can save 40% on-chip space and reduce up to 96% communication costs for large flows. Moreover, SAS-HYB’s on-chip memory usage will not be larger than SAS-LC or SAS-LOG and can save up to 19% on-chip space than SAS-LOG when both small flows and large flows are interested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骄阳完成签到 ,获得积分10
刚刚
1秒前
1秒前
云柔竹劲完成签到 ,获得积分10
2秒前
考槃在涧完成签到 ,获得积分10
2秒前
hah完成签到,获得积分10
3秒前
文轩完成签到,获得积分10
3秒前
我是老大应助smh采纳,获得10
4秒前
加减乘除完成签到,获得积分10
4秒前
zhukeqinag发布了新的文献求助10
5秒前
皮皮虾完成签到 ,获得积分10
6秒前
Aurora完成签到 ,获得积分10
6秒前
bkagyin应助陈曦读研版采纳,获得10
7秒前
asdmwhx完成签到,获得积分10
7秒前
qyzhu完成签到,获得积分10
10秒前
gaga完成签到,获得积分10
11秒前
GingerF应助xzy998采纳,获得50
12秒前
SherlockJia完成签到,获得积分10
13秒前
小小怪完成签到 ,获得积分10
13秒前
小城故事完成签到,获得积分10
13秒前
活泼的冬瓜完成签到,获得积分10
13秒前
善善完成签到 ,获得积分10
15秒前
研友_5Z4ZA5完成签到,获得积分10
15秒前
Q清风慕竹完成签到,获得积分10
16秒前
科研通AI6应助丘奇采纳,获得10
16秒前
badgerwithfisher完成签到,获得积分10
17秒前
可玩性完成签到 ,获得积分10
21秒前
行星一只兔完成签到 ,获得积分10
21秒前
shanshan完成签到,获得积分10
22秒前
siqilinwillbephd完成签到,获得积分10
23秒前
陈咪咪完成签到,获得积分10
25秒前
liujianxin发布了新的文献求助10
26秒前
得了MVP完成签到,获得积分10
27秒前
瘦瘦柠檬完成签到,获得积分20
28秒前
叶落无痕、完成签到,获得积分10
29秒前
123完成签到 ,获得积分10
33秒前
炳灿完成签到 ,获得积分10
33秒前
唯为完成签到,获得积分10
34秒前
jiuzhege完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256332
求助须知:如何正确求助?哪些是违规求助? 4418639
关于积分的说明 13752945
捐赠科研通 4291811
什么是DOI,文献DOI怎么找? 2355152
邀请新用户注册赠送积分活动 1351564
关于科研通互助平台的介绍 1312264