Self-Organizing Interval Type-2 Fuzzy Neural Network With Adaptive Discriminative Strategy

判别式 协变量 模糊逻辑 人工神经网络 人工智能 修剪 计算机科学 模式识别(心理学) 区间(图论) 数学 公制(单位) 机器学习 生物 农学 运营管理 组合数学 经济
作者
Honggui Han,Chenxuan Sun,Xiaolong Wu,Hongyan Yang,Junfei Qiao
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 1925-1939 被引量:4
标识
DOI:10.1109/tfuzz.2022.3215470
摘要

Covariate shift is a critical issue of interval type-2 fuzzy neural networks (IT2FNNs) due to the distribution discrepancy between training and testing samples. In this situation, IT2FNNs usually struggle to identify potential features from samples with explicit inductive biases. To address this problem, a self-organizing IT2FNN with an adaptive discriminative strategy (ADS-SOIT2FNN) is developed to maintain the identification performance in the presence of covariate shift. First, a granularity-based metric (GM), using higher order statistics of local samples, is designed to distinguish the distribution discrepancy caused by covariate shift. The multiple kernels incorporated into GM are able to cover the sample features of the whole Hilbert space. Second, a self-organizing strategy, associated with GM-based discriminative information, is presented to alleviate the structural bias by growing and pruning fuzzy rules. Then, a compact structure of ADS-SOIT2FNN is achieved to adapt to the covariate shift of samples and further strengthen its inductive ability. Third, an adaptive risk mitigation learning algorithm (RMLA) is introduced to update the parameters of ADS-SOIT2FNN. RMLA can regulate the derivatives of parameters with arbitrary distribution samples, which is beneficial for maintaining the global accuracy by relieving the risk of parameter biases. Finally, the effectiveness of ADS-SOIT2FNN is verified by some experiments for identifying nonlinear systems with covariate shift.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴子秋完成签到,获得积分10
刚刚
难过大神完成签到,获得积分10
1秒前
2秒前
李健的小迷弟应助wfei采纳,获得10
2秒前
小芸完成签到,获得积分20
4秒前
吴子秋发布了新的文献求助10
4秒前
陈陈完成签到,获得积分10
6秒前
天真念柏完成签到,获得积分10
7秒前
田様应助清秀凌蝶采纳,获得10
7秒前
小芸发布了新的文献求助30
8秒前
youyou发布了新的文献求助10
9秒前
9秒前
12秒前
Tz完成签到,获得积分20
12秒前
18秒前
19秒前
19秒前
20秒前
wfei完成签到,获得积分20
21秒前
yar应助双木明非采纳,获得10
22秒前
杨冰完成签到,获得积分10
23秒前
东曦难北发布了新的文献求助10
23秒前
清秀凌蝶发布了新的文献求助10
24秒前
D-L@rabbit发布了新的文献求助10
25秒前
xpp完成签到 ,获得积分10
26秒前
27秒前
yar应助难过大神采纳,获得10
27秒前
28秒前
28秒前
29秒前
29秒前
SciGPT应助LL采纳,获得10
31秒前
qgyj发布了新的文献求助10
32秒前
Viper3完成签到,获得积分10
32秒前
32秒前
shann完成签到,获得积分10
34秒前
青青青青发布了新的文献求助10
35秒前
35秒前
YA应助zxl采纳,获得10
36秒前
泥泥给泥泥的求助进行了留言
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264392
求助须知:如何正确求助?哪些是违规求助? 2904482
关于积分的说明 8330528
捐赠科研通 2574750
什么是DOI,文献DOI怎么找? 1399369
科研通“疑难数据库(出版商)”最低求助积分说明 654478
邀请新用户注册赠送积分活动 633194