Self-Organizing Interval Type-2 Fuzzy Neural Network With Adaptive Discriminative Strategy

判别式 协变量 模糊逻辑 人工神经网络 人工智能 修剪 计算机科学 模式识别(心理学) 区间(图论) 数学 公制(单位) 机器学习 生物 农学 运营管理 组合数学 经济
作者
Honggui Han,Chenxuan Sun,Xiaolong Wu,Hongyan Yang,Junfei Qiao
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 1925-1939 被引量:4
标识
DOI:10.1109/tfuzz.2022.3215470
摘要

Covariate shift is a critical issue of interval type-2 fuzzy neural networks (IT2FNNs) due to the distribution discrepancy between training and testing samples. In this situation, IT2FNNs usually struggle to identify potential features from samples with explicit inductive biases. To address this problem, a self-organizing IT2FNN with an adaptive discriminative strategy (ADS-SOIT2FNN) is developed to maintain the identification performance in the presence of covariate shift. First, a granularity-based metric (GM), using higher order statistics of local samples, is designed to distinguish the distribution discrepancy caused by covariate shift. The multiple kernels incorporated into GM are able to cover the sample features of the whole Hilbert space. Second, a self-organizing strategy, associated with GM-based discriminative information, is presented to alleviate the structural bias by growing and pruning fuzzy rules. Then, a compact structure of ADS-SOIT2FNN is achieved to adapt to the covariate shift of samples and further strengthen its inductive ability. Third, an adaptive risk mitigation learning algorithm (RMLA) is introduced to update the parameters of ADS-SOIT2FNN. RMLA can regulate the derivatives of parameters with arbitrary distribution samples, which is beneficial for maintaining the global accuracy by relieving the risk of parameter biases. Finally, the effectiveness of ADS-SOIT2FNN is verified by some experiments for identifying nonlinear systems with covariate shift.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倾城完成签到,获得积分10
1秒前
3秒前
didi发布了新的文献求助10
4秒前
俭朴听双完成签到,获得积分10
5秒前
xxx完成签到 ,获得积分10
5秒前
dong发布了新的文献求助10
6秒前
7秒前
子春末发布了新的文献求助10
9秒前
LiWeipeng完成签到,获得积分10
16秒前
泡芙发布了新的文献求助10
20秒前
哈哈哈哈完成签到 ,获得积分10
20秒前
浮游应助dong采纳,获得10
22秒前
不懂QM的薛定谔猫完成签到,获得积分10
25秒前
KBRS完成签到 ,获得积分10
26秒前
27秒前
31秒前
pliciyir发布了新的文献求助10
32秒前
halona完成签到,获得积分10
32秒前
33秒前
liaoxinghui完成签到,获得积分20
34秒前
刘Liam完成签到 ,获得积分10
37秒前
李健的小迷弟应助glay采纳,获得10
37秒前
hy发布了新的文献求助10
38秒前
liaoxinghui发布了新的文献求助10
38秒前
凉兮发布了新的文献求助30
39秒前
泡芙完成签到,获得积分10
41秒前
41秒前
222完成签到,获得积分10
42秒前
42秒前
hh完成签到,获得积分10
44秒前
却之不恭6253完成签到,获得积分10
45秒前
凉兮完成签到,获得积分10
46秒前
222发布了新的文献求助10
47秒前
palace完成签到,获得积分10
48秒前
50秒前
51秒前
53秒前
脑洞疼应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
乐乐应助科研通管家采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645588
关于积分的说明 14675693
捐赠科研通 4586757
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460969