亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Organizing Interval Type-2 Fuzzy Neural Network With Adaptive Discriminative Strategy

判别式 协变量 模糊逻辑 人工神经网络 人工智能 修剪 计算机科学 模式识别(心理学) 区间(图论) 数学 公制(单位) 机器学习 组合数学 生物 运营管理 经济 农学
作者
Honggui Han,Chenxuan Sun,Xiaolong Wu,Hongyan Yang,Junfei Qiao
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 1925-1939 被引量:4
标识
DOI:10.1109/tfuzz.2022.3215470
摘要

Covariate shift is a critical issue of interval type-2 fuzzy neural networks (IT2FNNs) due to the distribution discrepancy between training and testing samples. In this situation, IT2FNNs usually struggle to identify potential features from samples with explicit inductive biases. To address this problem, a self-organizing IT2FNN with an adaptive discriminative strategy (ADS-SOIT2FNN) is developed to maintain the identification performance in the presence of covariate shift. First, a granularity-based metric (GM), using higher order statistics of local samples, is designed to distinguish the distribution discrepancy caused by covariate shift. The multiple kernels incorporated into GM are able to cover the sample features of the whole Hilbert space. Second, a self-organizing strategy, associated with GM-based discriminative information, is presented to alleviate the structural bias by growing and pruning fuzzy rules. Then, a compact structure of ADS-SOIT2FNN is achieved to adapt to the covariate shift of samples and further strengthen its inductive ability. Third, an adaptive risk mitigation learning algorithm (RMLA) is introduced to update the parameters of ADS-SOIT2FNN. RMLA can regulate the derivatives of parameters with arbitrary distribution samples, which is beneficial for maintaining the global accuracy by relieving the risk of parameter biases. Finally, the effectiveness of ADS-SOIT2FNN is verified by some experiments for identifying nonlinear systems with covariate shift.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的哑铃完成签到,获得积分10
刚刚
1秒前
9秒前
Able完成签到,获得积分10
10秒前
13秒前
哈哈哈发布了新的文献求助10
15秒前
26秒前
码头整点薯条完成签到,获得积分10
27秒前
28秒前
28秒前
Owen应助科研通管家采纳,获得10
29秒前
31秒前
32秒前
观潮应助码头整点薯条采纳,获得10
37秒前
Jasper应助码头整点薯条采纳,获得10
42秒前
44秒前
49秒前
春宇浩然发布了新的文献求助10
56秒前
1分钟前
roro熊完成签到 ,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
JodieZhu完成签到,获得积分10
1分钟前
1分钟前
义气丹雪应助JodieZhu采纳,获得30
1分钟前
1分钟前
糟糕的颜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Wei发布了新的文献求助50
1分钟前
wggggggy发布了新的文献求助10
1分钟前
脑洞疼应助春宇浩然采纳,获得10
2分钟前
学术交流高完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
义气丹雪应助JodieZhu采纳,获得30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402