Self-Organizing Interval Type-2 Fuzzy Neural Network With Adaptive Discriminative Strategy

判别式 协变量 模糊逻辑 人工神经网络 人工智能 修剪 计算机科学 模式识别(心理学) 区间(图论) 数学 公制(单位) 机器学习 生物 农学 运营管理 组合数学 经济
作者
Honggui Han,Chenxuan Sun,Xiaolong Wu,Hongyan Yang,Junfei Qiao
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (6): 1925-1939 被引量:4
标识
DOI:10.1109/tfuzz.2022.3215470
摘要

Covariate shift is a critical issue of interval type-2 fuzzy neural networks (IT2FNNs) due to the distribution discrepancy between training and testing samples. In this situation, IT2FNNs usually struggle to identify potential features from samples with explicit inductive biases. To address this problem, a self-organizing IT2FNN with an adaptive discriminative strategy (ADS-SOIT2FNN) is developed to maintain the identification performance in the presence of covariate shift. First, a granularity-based metric (GM), using higher order statistics of local samples, is designed to distinguish the distribution discrepancy caused by covariate shift. The multiple kernels incorporated into GM are able to cover the sample features of the whole Hilbert space. Second, a self-organizing strategy, associated with GM-based discriminative information, is presented to alleviate the structural bias by growing and pruning fuzzy rules. Then, a compact structure of ADS-SOIT2FNN is achieved to adapt to the covariate shift of samples and further strengthen its inductive ability. Third, an adaptive risk mitigation learning algorithm (RMLA) is introduced to update the parameters of ADS-SOIT2FNN. RMLA can regulate the derivatives of parameters with arbitrary distribution samples, which is beneficial for maintaining the global accuracy by relieving the risk of parameter biases. Finally, the effectiveness of ADS-SOIT2FNN is verified by some experiments for identifying nonlinear systems with covariate shift.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
舒屿望迷完成签到,获得积分10
1秒前
冷静妙海完成签到 ,获得积分10
2秒前
Febrine0502完成签到,获得积分10
2秒前
3秒前
永霖完成签到,获得积分10
4秒前
4秒前
wyy完成签到,获得积分10
6秒前
Akim应助seven采纳,获得10
6秒前
桐桐应助孙晓婷采纳,获得30
6秒前
7秒前
包容的夏之完成签到,获得积分10
7秒前
op1116完成签到,获得积分10
8秒前
王昕钥完成签到,获得积分10
8秒前
啊呜发布了新的文献求助10
8秒前
zoe666发布了新的文献求助30
8秒前
9秒前
柯一一应助wise111采纳,获得10
9秒前
张铎完成签到,获得积分20
10秒前
112233445566完成签到,获得积分20
10秒前
火星上的英姑完成签到,获得积分10
10秒前
熊一只完成签到,获得积分10
10秒前
慕青应助战战采纳,获得10
11秒前
11秒前
cacaldon发布了新的文献求助10
11秒前
柯一一应助离枝采纳,获得10
12秒前
14秒前
香蕉觅云应助12erf采纳,获得10
14秒前
王昕钥发布了新的文献求助100
15秒前
万能图书馆应助597采纳,获得10
16秒前
16秒前
十四完成签到 ,获得积分10
16秒前
Windln完成签到,获得积分10
16秒前
Aten完成签到,获得积分10
17秒前
汉堡包应助帅气的绿凝采纳,获得10
20秒前
20秒前
22秒前
22秒前
SYLH应助小鱼儿采纳,获得10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962798
求助须知:如何正确求助?哪些是违规求助? 3508732
关于积分的说明 11142584
捐赠科研通 3241478
什么是DOI,文献DOI怎么找? 1791581
邀请新用户注册赠送积分活动 872976
科研通“疑难数据库(出版商)”最低求助积分说明 803517