Airborne Microbial Aerosol Detection by Combining Single Particle Mass Spectrometry and a Fluorescent Aerosol Particle Sizer

气溶胶 化学 粒子(生态学) 质谱法 荧光 荧光光谱法 环境化学 色谱法 光学 生态学 生物 物理 有机化学
作者
Han Lun Lu,Zhan Min Su,Lei Li,Xuan Li
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (51): 17861-17867 被引量:12
标识
DOI:10.1021/acs.analchem.2c03636
摘要

Detection methods for microbiological aerosols based on single particle mass spectrometry (SPAMS) and a fluorescent aerosol particle sizer (FLAPS) have been developed progressively. However, they encounter interference and inefficiency issues. By merging FLAPS and SPAMS technologies, the majority of inorganic ambient aerosols may be eliminated by the FLAPS, thus resolving SPAMS' large data volume. SPAMS, on the other hand, may eliminate the secondary fluorescence interference that plagues the FLAPS. With the addition of the enhanced machine learning classifier, it is possible to extract microbial aerosol signals more precisely. In this work, a FLAPS–SPAMS instrument and a Random Forest classifier based on Kendall's correlation expansion training set approach were built. In addition to analyzing the outdoor microbial proportions, the interference components of non-microbial fluorescent particles were also examined. Results indicate that the fraction of outdoor microbial aerosols in fluorescent particles is 25.72% or roughly 2.57% of total particles. Traditional ART-2A algorithm and semi-empirical feature clustering approaches were used to identify the interference categories of abiotic fluorescent particles, which were mostly constituted of EC/OC, LPG/LNG exhaust, heavy metal organics, nicotine, vinylpyridine, polycyclic aromatic hydrocarbons (PAHs), and polymers, accounting for 68.51% of fluorescent particles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实莫言完成签到,获得积分10
刚刚
科研通AI5应助似鱼采纳,获得10
1秒前
阳阳完成签到,获得积分10
2秒前
2秒前
沉默靳完成签到,获得积分10
2秒前
吼吼哈哈发布了新的文献求助10
3秒前
李爱国应助烂漫夜梅采纳,获得10
3秒前
英姑应助Hollen采纳,获得50
4秒前
随便起个名完成签到,获得积分10
4秒前
ff发布了新的文献求助10
5秒前
5秒前
顾海东完成签到,获得积分10
5秒前
小次之山发布了新的文献求助10
5秒前
艺凯完成签到,获得积分10
7秒前
慕青应助kunkun采纳,获得10
8秒前
9秒前
健忘傲柏完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
14秒前
领导范儿应助猫与咖啡采纳,获得10
14秒前
竹筏过海应助bingchem采纳,获得30
14秒前
15秒前
yangya发布了新的文献求助100
16秒前
17秒前
忘久完成签到,获得积分10
17秒前
18秒前
鱿鱼炒黄瓜完成签到,获得积分10
19秒前
CipherSage应助旧辞采纳,获得10
20秒前
zp发布了新的文献求助10
20秒前
似鱼发布了新的文献求助10
20秒前
20秒前
科研通AI5应助研究牲采纳,获得10
21秒前
wanci应助hob采纳,获得10
23秒前
23秒前
8R60d8应助随风采纳,获得10
24秒前
amber发布了新的文献求助10
25秒前
李健应助Migrol采纳,获得10
26秒前
木子应助keyanzhazha采纳,获得50
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427