CLA-U-Net: Convolutional Long-short-term-memory Attention-gated U-Net for Automatic Segmentation of the Left Ventricle in 2-D Echocardiograms

人工智能 计算机科学 网(多面体) 模式识别(心理学) 分割 编码器 深度学习 块(置换群论) 超参数 试验装置 集合(抽象数据类型) 数学 几何学 程序设计语言 操作系统
作者
Zihan Lin,Po‐Hsiang Tsui,Yan Zeng,Guangyu Bin,Shuicai Wu,Zhuhuang Zhou
标识
DOI:10.1109/ius54386.2022.9958784
摘要

Left ventricular ejection fraction is one of the important indices to evaluate cardiac function. Manual segmentation of the left ventricle (LV) in 2-D echocardiograms is tedious and time-consuming. We proposed a deep learning method called convolutional long-short-term-memory attention-gated U-Net (CLA-U-Net) for automatic segmentation of the LV in 2-D echocardiograms. The CLA-U-Net model was trained and tested using the EchoNet-Dynamic dataset. The dataset contained 9984 annotated echocardiogram videos (training set: 7456; validation set: 1296; test set 1232). The model was also tested on a private clinical dataset of 20 echocardiogram videos. U-Net was used as the basic encoder and decoder structure, and some very useful structures were designed. In the encoding part, we incorporated a convolutional long-short-term-memory (C-LSTM) block to guide the network to capture the temporal information between frames in the videos. In addition, we replaced the skip-connection structure of the original U-Net with a channel attention mechanism, which can amplify the desired feature signals and suppress the noise. With the proposed CLA-U-Net, the LV was segmented automatically on the EchoNet-Dynamic test set, and a Dice similarity coefficient (DSC) of 0.9311 was obtained. The DSC obtained by the DeepLabV3 network was 0.9236. The hyperparameters of CLA-U-Net were only 19.9 MB, reduced by ~91.6% as compared with DeepLabV3 network. For the private clinical dataset, a DSC of 0.9192 was obtained. Our CLA-U-Net achieved a desirable LV segmentation accuracy, with a lower amount of hyperparameters. The CLA-U-Net may be used as a new lightweight deep learning method for automatic LV segmentation in 2-D echocardiograms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
橙子小猪完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
DrW1111发布了新的文献求助10
7秒前
科研通AI2S应助橙子小猪采纳,获得10
8秒前
shinn发布了新的文献求助10
8秒前
8秒前
9秒前
DrQin发布了新的文献求助10
9秒前
xiaole完成签到 ,获得积分10
10秒前
包容的世倌完成签到 ,获得积分10
10秒前
mmm发布了新的文献求助10
11秒前
12秒前
13秒前
啦啦啦发布了新的文献求助20
15秒前
LY完成签到,获得积分20
15秒前
在水一方应助霸气的金鱼采纳,获得10
16秒前
上官若男应助迷人问兰采纳,获得10
16秒前
17秒前
19秒前
19秒前
8R60d8应助YVONNE采纳,获得10
19秒前
沉默的馒头完成签到,获得积分20
20秒前
20秒前
柠檬初上完成签到,获得积分10
21秒前
在水一方应助石榴汁的书采纳,获得10
21秒前
21秒前
21秒前
22秒前
搜集达人应助shinn采纳,获得10
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303