亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CLA-U-Net: Convolutional Long-short-term-memory Attention-gated U-Net for Automatic Segmentation of the Left Ventricle in 2-D Echocardiograms

人工智能 计算机科学 网(多面体) 模式识别(心理学) 分割 编码器 深度学习 块(置换群论) 超参数 试验装置 集合(抽象数据类型) 数学 几何学 操作系统 程序设计语言
作者
Zihan Lin,Po‐Hsiang Tsui,Yan Zeng,Guangyu Bin,Shuicai Wu,Zhuhuang Zhou
标识
DOI:10.1109/ius54386.2022.9958784
摘要

Left ventricular ejection fraction is one of the important indices to evaluate cardiac function. Manual segmentation of the left ventricle (LV) in 2-D echocardiograms is tedious and time-consuming. We proposed a deep learning method called convolutional long-short-term-memory attention-gated U-Net (CLA-U-Net) for automatic segmentation of the LV in 2-D echocardiograms. The CLA-U-Net model was trained and tested using the EchoNet-Dynamic dataset. The dataset contained 9984 annotated echocardiogram videos (training set: 7456; validation set: 1296; test set 1232). The model was also tested on a private clinical dataset of 20 echocardiogram videos. U-Net was used as the basic encoder and decoder structure, and some very useful structures were designed. In the encoding part, we incorporated a convolutional long-short-term-memory (C-LSTM) block to guide the network to capture the temporal information between frames in the videos. In addition, we replaced the skip-connection structure of the original U-Net with a channel attention mechanism, which can amplify the desired feature signals and suppress the noise. With the proposed CLA-U-Net, the LV was segmented automatically on the EchoNet-Dynamic test set, and a Dice similarity coefficient (DSC) of 0.9311 was obtained. The DSC obtained by the DeepLabV3 network was 0.9236. The hyperparameters of CLA-U-Net were only 19.9 MB, reduced by ~91.6% as compared with DeepLabV3 network. For the private clinical dataset, a DSC of 0.9192 was obtained. Our CLA-U-Net achieved a desirable LV segmentation accuracy, with a lower amount of hyperparameters. The CLA-U-Net may be used as a new lightweight deep learning method for automatic LV segmentation in 2-D echocardiograms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
阿绵发布了新的文献求助10
8秒前
8秒前
Wone3完成签到 ,获得积分10
10秒前
科研之路完成签到,获得积分10
12秒前
Hello应助阿绵采纳,获得10
16秒前
Qiaoguliang发布了新的文献求助10
20秒前
勤奋忆寒发布了新的文献求助10
21秒前
勤奋忆寒完成签到,获得积分10
29秒前
3080完成签到 ,获得积分10
36秒前
钱都来完成签到 ,获得积分10
39秒前
王文艺发布了新的文献求助10
41秒前
今后应助科研通管家采纳,获得30
46秒前
浮游应助科研通管家采纳,获得10
46秒前
浮游应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
深情安青应助科研通管家采纳,获得10
46秒前
46秒前
hygge给hygge的求助进行了留言
51秒前
故意的鞋垫完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
YJT发布了新的文献求助10
1分钟前
1分钟前
1分钟前
酷波er应助YJT采纳,获得10
1分钟前
GingerF应助轻松小张采纳,获得50
1分钟前
Qy0306完成签到,获得积分10
2分钟前
西瓜发布了新的文献求助10
2分钟前
科目三应助Qy0306采纳,获得10
2分钟前
zyl完成签到 ,获得积分10
2分钟前
医科大学菜鸡完成签到,获得积分10
2分钟前
2分钟前
华仔应助十七采纳,获得10
2分钟前
领导范儿应助Funnymudpee采纳,获得10
2分钟前
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522696
求助须知:如何正确求助?哪些是违规求助? 4613647
关于积分的说明 14539100
捐赠科研通 4551340
什么是DOI,文献DOI怎么找? 2494190
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446527