CLA-U-Net: Convolutional Long-short-term-memory Attention-gated U-Net for Automatic Segmentation of the Left Ventricle in 2-D Echocardiograms

人工智能 计算机科学 网(多面体) 模式识别(心理学) 分割 编码器 深度学习 块(置换群论) 超参数 试验装置 集合(抽象数据类型) 数学 几何学 程序设计语言 操作系统
作者
Zihan Lin,Po‐Hsiang Tsui,Yan Zeng,Guangyu Bin,Shuicai Wu,Zhuhuang Zhou
标识
DOI:10.1109/ius54386.2022.9958784
摘要

Left ventricular ejection fraction is one of the important indices to evaluate cardiac function. Manual segmentation of the left ventricle (LV) in 2-D echocardiograms is tedious and time-consuming. We proposed a deep learning method called convolutional long-short-term-memory attention-gated U-Net (CLA-U-Net) for automatic segmentation of the LV in 2-D echocardiograms. The CLA-U-Net model was trained and tested using the EchoNet-Dynamic dataset. The dataset contained 9984 annotated echocardiogram videos (training set: 7456; validation set: 1296; test set 1232). The model was also tested on a private clinical dataset of 20 echocardiogram videos. U-Net was used as the basic encoder and decoder structure, and some very useful structures were designed. In the encoding part, we incorporated a convolutional long-short-term-memory (C-LSTM) block to guide the network to capture the temporal information between frames in the videos. In addition, we replaced the skip-connection structure of the original U-Net with a channel attention mechanism, which can amplify the desired feature signals and suppress the noise. With the proposed CLA-U-Net, the LV was segmented automatically on the EchoNet-Dynamic test set, and a Dice similarity coefficient (DSC) of 0.9311 was obtained. The DSC obtained by the DeepLabV3 network was 0.9236. The hyperparameters of CLA-U-Net were only 19.9 MB, reduced by ~91.6% as compared with DeepLabV3 network. For the private clinical dataset, a DSC of 0.9192 was obtained. Our CLA-U-Net achieved a desirable LV segmentation accuracy, with a lower amount of hyperparameters. The CLA-U-Net may be used as a new lightweight deep learning method for automatic LV segmentation in 2-D echocardiograms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩迷谜完成签到,获得积分0
刚刚
刚刚
酷酷的紫南完成签到 ,获得积分10
1秒前
迷人凡旋完成签到,获得积分20
1秒前
JamesPei应助大李包采纳,获得10
1秒前
1秒前
天涯完成签到 ,获得积分10
2秒前
shr完成签到,获得积分10
2秒前
落后以旋完成签到,获得积分10
2秒前
小二郎应助缚大哥采纳,获得10
2秒前
充电宝应助青木蓝采纳,获得10
3秒前
云中渊发布了新的文献求助10
3秒前
冷静的毛豆完成签到,获得积分10
3秒前
涵Allen完成签到 ,获得积分10
3秒前
思源应助wzxxxx采纳,获得10
3秒前
隐形曼青应助shelly0621采纳,获得10
4秒前
无敌鱼发布了新的文献求助10
4秒前
5秒前
meimei完成签到,获得积分10
5秒前
朴实的薯片完成签到,获得积分10
6秒前
way完成签到,获得积分10
7秒前
脑洞疼应助Chan0501采纳,获得10
8秒前
fancy完成签到 ,获得积分10
8秒前
Maglev发布了新的文献求助10
9秒前
9秒前
含糊的代丝完成签到 ,获得积分10
9秒前
9秒前
10秒前
小九发布了新的文献求助20
10秒前
zhui发布了新的文献求助10
11秒前
通达完成签到,获得积分10
12秒前
FashionBoy应助猪猪hero采纳,获得10
12秒前
jy发布了新的文献求助10
12秒前
祥云完成签到,获得积分10
12秒前
无敌鱼完成签到,获得积分10
13秒前
ffu完成签到 ,获得积分10
13秒前
天天快乐应助好的采纳,获得10
13秒前
13秒前
香蕉觅云应助科研小白花采纳,获得10
13秒前
18746005898发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794