Developing a deep learning model for sleep stage prediction in obstructive sleep apnea cohort using 60 GHz frequency‐modulated continuous‐wave radar

多导睡眠图 雷达 阻塞性睡眠呼吸暂停 睡眠(系统调用) 慢波睡眠 人工智能 队列 医学 睡眠呼吸暂停 计算机科学 清醒 睡眠阶段 机器学习 呼吸暂停 听力学 内科学 电信 脑电图 精神科 操作系统
作者
Ji-Hyun Lee,Hyunwoo Nam,Dong Hyun Kim,Dae Lim Koo,Jae Won Choi,Seung‐No Hong,Eun‐Tae Jeon,Sungmook Lim,Gwang Soo Jang,Baekhyun Kim
出处
期刊:Journal of Sleep Research [Wiley]
卷期号:33 (1) 被引量:3
标识
DOI:10.1111/jsr.14050
摘要

Given the significant impact of sleep on overall health, radar technology offers a promising, non-invasive, and cost-effective avenue for the early detection of sleep disorders, even prior to relying on polysomnography (PSG)-based classification. In this study, we employed an attention-based bidirectional long short-term memory (Attention Bi-LSTM) model to accurately predict sleep stages using 60 GHz frequency-modulated continuous-wave (FMCW) radar. Our dataset comprised 78 participants from an ongoing obstructive sleep apnea (OSA) cohort, recruited between July 2021 and November 2022, who underwent overnight polysomnography alongside radar sensor monitoring. The dataset encompasses comprehensive polysomnography recordings, spanning both sleep and wakefulness states. The predictions achieved a Cohen's kappa coefficient of 0.746 and an overall accuracy of 85.2% in classifying wakefulness, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep (N1 + N2 + N3). The results demonstrated that the models incorporating both Radar 1 and Radar 2 data consistently outperformed those using only Radar 1 data, indicating the potential benefits of utilising multiple radars for sleep stage classification. Although the performance of the models tended to decline with increasing OSA severity, the addition of Radar 2 data notably improved the classification accuracy. These findings demonstrate the potential of radar technology as a valuable screening tool for sleep stage classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献求助20240103完成签到,获得积分10
1秒前
wjswift完成签到,获得积分10
1秒前
fangfangfang发布了新的文献求助10
1秒前
jyy应助不吃西红柿采纳,获得10
1秒前
晁子枫发布了新的文献求助10
2秒前
4秒前
乐观小之应助科研通管家采纳,获得10
4秒前
乐观小之应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得30
4秒前
伏波完成签到,获得积分0
4秒前
Dada应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
乐观小之应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
Dada应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
乐观小之应助科研通管家采纳,获得10
4秒前
5秒前
Akim应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
乐观小之应助科研通管家采纳,获得10
5秒前
5秒前
Dada应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
April完成签到,获得积分10
5秒前
研友_ngkyGn完成签到,获得积分10
6秒前
CodeCraft应助不安忆寒采纳,获得10
7秒前
无花果应助搞怪的易槐采纳,获得10
7秒前
8秒前
研友_VZG7GZ应助小风波采纳,获得10
8秒前
8秒前
Winnie完成签到 ,获得积分10
9秒前
9秒前
皮质醇发布了新的文献求助10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719