A dual-population evolutionary algorithm based on dynamic constraint processing and resources allocation for constrained multi-objective optimization problems

数学优化 计算机科学 约束(计算机辅助设计) 对偶(语法数字) 人口 进化算法 资源配置 帕累托原理 多目标优化 方案(数学) 数学 文学类 数学分析 艺术 社会学 人口学 计算机网络 几何学
作者
Kangjia Qiao,Zhaolin Chen,Boyang Qu,Kunjie Yu,Caitong Yue,Ke Chen,Jing Liang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121707-121707 被引量:17
标识
DOI:10.1016/j.eswa.2023.121707
摘要

Constrained multi-objective optimization problems (CMOPs) contain the satisfaction of various constraints and optimization of multiple objectives simultaneously, thus they are extremely challenging. Although many constrained multi-objective evolutionary algorithms (CMOEAs) have been proposed, they ignore the information of each constraint, which might help utilize more various infeasible solutions to improve the search ability of the population. Therefore, this paper proposes a new dual-population CMOEA to solve CMOPs, in which a dynamic constraint processing mechanism and a dynamic resource allocating scheme are designed. To be specific, the proposed algorithm evolves two populations, which adopt different mechanisms to handle constraints respectively. The main population directly optimizes all constraints to find the feasible Pareto optimal solutions, which can improve the feasibility. The auxiliary population adopts a dynamic constraint processing mechanism, which gradually increases the number of constraints being processed, so as to fully utilize various infeasible solutions to help find feasible regions. Moreover, a new dynamic resource allocating scheme is proposed to reasonably allocate the limited computational resources to the two populations according to their performance feedback. Experimental results on three test suites and ten practical problems show that the proposed algorithm has a better or competitive performance compared with several state-of-the-art CMOEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大炮弹发布了新的文献求助10
1秒前
1秒前
坚强的夏瑶完成签到,获得积分10
1秒前
3秒前
欢喜孤风完成签到,获得积分20
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
5秒前
iNk应助科研通管家采纳,获得20
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
笔墨留香发布了新的文献求助10
5秒前
6秒前
7秒前
欢喜孤风发布了新的文献求助10
7秒前
9秒前
9秒前
小洋发布了新的文献求助10
10秒前
酷波er应助时尚的飞机采纳,获得10
11秒前
zz发布了新的文献求助10
11秒前
狒狒2022完成签到,获得积分10
12秒前
张张发布了新的文献求助10
12秒前
鳗鱼灵安完成签到,获得积分10
12秒前
lidongxing发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
所所应助珊珊采纳,获得10
13秒前
13秒前
pentjy完成签到,获得积分10
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182