Multi-label borderline oversampling technique

过采样 重采样 分类器(UML) 计算机科学 人工智能 机器学习 班级(哲学) 模式识别(心理学) 带宽(计算) 计算机网络
作者
Zeyu Teng,Peng Cao,Min Huang,Zheming Gao,Xingwei Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:145: 109953-109953 被引量:10
标识
DOI:10.1016/j.patcog.2023.109953
摘要

Class imbalance problem commonly exists in multi-label classification (MLC) tasks. It has non-negligible impacts on the classifier performance and has drawn extensive attention in recent years. Borderline oversampling has been widely used in single-label learning as a competitive technique in dealing with class imbalance. Nevertheless, the borderline samples in multi-label data sets (MLDs) have not been studied. Hence, this paper deeply discussed the borderline samples in MLDs and found they have different neighboring relationships with class borders, which makes their roles different in the classifier training. For that, they are divided into two types named the self-borderline samples and the cross-borderline samples. Further, a novel MLDs resampling approach called Multi-Label Borderline Oversampling Technique (MLBOTE) is proposed for multi-label imbalanced learning. MLBOTE identifies three types of seed samples, including interior, self-borderline, and cross-borderline samples, and different oversampling mechanisms are designed for them, respectively. Meanwhile, it regards not only the minority classes but also the classes suffering from one-vs-rest imbalance as those in need of oversampling. Experiments on eight data sets with nine MLC algorithms and three base classifiers are carried out to compare MLBOTE with some state-of-art MLDs resampling techniques. The results show MLBOTE outperforms other methods in various scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
家伟完成签到,获得积分10
刚刚
wanci应助士多啤梨采纳,获得10
刚刚
1秒前
1秒前
科研通AI2S应助木木采纳,获得10
1秒前
1秒前
1秒前
无极微光应助ZZ采纳,获得20
1秒前
灵巧小鸽子完成签到,获得积分10
2秒前
科研通AI6应助jhy0803采纳,获得10
2秒前
无极微光应助龙龙采纳,获得20
2秒前
2秒前
白华苍松发布了新的文献求助10
2秒前
3秒前
3秒前
家伟发布了新的文献求助10
3秒前
spc68应助自觉士萧采纳,获得10
3秒前
xinying完成签到,获得积分20
3秒前
3秒前
3秒前
xqc完成签到 ,获得积分10
3秒前
赘婿应助jk采纳,获得10
3秒前
4秒前
雾海完成签到,获得积分10
5秒前
yuan完成签到 ,获得积分10
5秒前
HN洪发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
acorn发布了新的文献求助10
6秒前
bkagyin应助儒雅的秋玲采纳,获得10
6秒前
傅诗淇完成签到 ,获得积分10
6秒前
明阳发布了新的文献求助10
7秒前
菜头完成签到,获得积分10
7秒前
迪迦发布了新的文献求助10
7秒前
Yuetler发布了新的文献求助10
7秒前
7秒前
闫鹤文完成签到,获得积分10
7秒前
7秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066