Multi-label borderline oversampling technique

过采样 重采样 分类器(UML) 计算机科学 人工智能 机器学习 班级(哲学) 模式识别(心理学) 带宽(计算) 计算机网络
作者
Zeyu Teng,Peng Cao,Min Huang,Zheming Gao,Xingwei Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:145: 109953-109953 被引量:2
标识
DOI:10.1016/j.patcog.2023.109953
摘要

Class imbalance problem commonly exists in multi-label classification (MLC) tasks. It has non-negligible impacts on the classifier performance and has drawn extensive attention in recent years. Borderline oversampling has been widely used in single-label learning as a competitive technique in dealing with class imbalance. Nevertheless, the borderline samples in multi-label data sets (MLDs) have not been studied. Hence, this paper deeply discussed the borderline samples in MLDs and found they have different neighboring relationships with class borders, which makes their roles different in the classifier training. For that, they are divided into two types named the self-borderline samples and the cross-borderline samples. Further, a novel MLDs resampling approach called Multi-Label Borderline Oversampling Technique (MLBOTE) is proposed for multi-label imbalanced learning. MLBOTE identifies three types of seed samples, including interior, self-borderline, and cross-borderline samples, and different oversampling mechanisms are designed for them, respectively. Meanwhile, it regards not only the minority classes but also the classes suffering from one-vs-rest imbalance as those in need of oversampling. Experiments on eight data sets with nine MLC algorithms and three base classifiers are carried out to compare MLBOTE with some state-of-art MLDs resampling techniques. The results show MLBOTE outperforms other methods in various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香菜芋头发布了新的文献求助10
刚刚
刚刚
yasiraziz完成签到,获得积分10
刚刚
刚刚
1秒前
luo完成签到,获得积分10
1秒前
Ahha发布了新的文献求助10
2秒前
Kane发布了新的文献求助10
2秒前
2秒前
潇潇完成签到,获得积分20
2秒前
石楠完成签到,获得积分10
2秒前
小二郎应助shawn采纳,获得10
3秒前
加菲丰丰应助搞怪烨伟采纳,获得20
3秒前
任娜发布了新的文献求助10
3秒前
4秒前
柯同发布了新的文献求助10
4秒前
个性的紫菜应助贺英采纳,获得20
4秒前
独特的翠芙完成签到,获得积分10
5秒前
NIMO发布了新的文献求助20
5秒前
挽风完成签到,获得积分10
6秒前
6秒前
潇潇发布了新的文献求助10
6秒前
7秒前
王淳完成签到 ,获得积分10
7秒前
7秒前
情怀应助雪花君采纳,获得10
8秒前
8秒前
8秒前
酷炫煎饼完成签到,获得积分10
8秒前
8秒前
fanqinge完成签到,获得积分20
9秒前
领导范儿应助左丘傲菡采纳,获得10
10秒前
LC发布了新的文献求助10
10秒前
10秒前
赘婿应助Kane采纳,获得10
10秒前
10秒前
LZL发布了新的文献求助10
11秒前
11秒前
匆匆完成签到,获得积分10
11秒前
今后应助柯同采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386