Multi-label borderline oversampling technique

过采样 重采样 分类器(UML) 计算机科学 人工智能 机器学习 班级(哲学) 模式识别(心理学) 带宽(计算) 计算机网络
作者
Zeyu Teng,Peng Cao,Min Huang,Zheming Gao,Xingwei Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109953-109953 被引量:10
标识
DOI:10.1016/j.patcog.2023.109953
摘要

Class imbalance problem commonly exists in multi-label classification (MLC) tasks. It has non-negligible impacts on the classifier performance and has drawn extensive attention in recent years. Borderline oversampling has been widely used in single-label learning as a competitive technique in dealing with class imbalance. Nevertheless, the borderline samples in multi-label data sets (MLDs) have not been studied. Hence, this paper deeply discussed the borderline samples in MLDs and found they have different neighboring relationships with class borders, which makes their roles different in the classifier training. For that, they are divided into two types named the self-borderline samples and the cross-borderline samples. Further, a novel MLDs resampling approach called Multi-Label Borderline Oversampling Technique (MLBOTE) is proposed for multi-label imbalanced learning. MLBOTE identifies three types of seed samples, including interior, self-borderline, and cross-borderline samples, and different oversampling mechanisms are designed for them, respectively. Meanwhile, it regards not only the minority classes but also the classes suffering from one-vs-rest imbalance as those in need of oversampling. Experiments on eight data sets with nine MLC algorithms and three base classifiers are carried out to compare MLBOTE with some state-of-art MLDs resampling techniques. The results show MLBOTE outperforms other methods in various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉大侠完成签到,获得积分10
刚刚
刚刚
issl完成签到,获得积分10
1秒前
小肉包完成签到,获得积分10
1秒前
何相逢完成签到,获得积分0
1秒前
vv1223完成签到,获得积分10
1秒前
英俊的铭应助spy采纳,获得10
2秒前
Giroro_roro发布了新的文献求助10
2秒前
微笑觅柔完成签到,获得积分10
2秒前
wjn发布了新的文献求助10
2秒前
默listening完成签到,获得积分10
2秒前
2秒前
3秒前
斯文败类应助小艳胡采纳,获得10
3秒前
3秒前
12w完成签到,获得积分10
4秒前
哆啦的空间站完成签到,获得积分10
4秒前
MM发布了新的文献求助10
4秒前
迅速采波发布了新的文献求助10
5秒前
zhang_rx完成签到,获得积分20
5秒前
嵇南露完成签到,获得积分10
5秒前
华仔应助哈士轩采纳,获得10
5秒前
高大乌龟完成签到,获得积分10
6秒前
李子不是杏完成签到 ,获得积分10
7秒前
betty2009完成签到,获得积分10
8秒前
高大乌龟发布了新的文献求助10
8秒前
加一点荒谬完成签到,获得积分10
9秒前
RRR完成签到,获得积分10
10秒前
10秒前
猕猴桃发布了新的文献求助10
10秒前
10秒前
ricown发布了新的文献求助30
11秒前
11秒前
12秒前
星辰大海应助MM采纳,获得10
12秒前
64658应助Lin采纳,获得10
12秒前
13秒前
浅夏淡忆完成签到,获得积分20
13秒前
yukinade完成签到,获得积分10
13秒前
微7完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635