Multi-label borderline oversampling technique

过采样 重采样 分类器(UML) 计算机科学 人工智能 机器学习 班级(哲学) 模式识别(心理学) 带宽(计算) 计算机网络
作者
Zeyu Teng,Peng Cao,Min Huang,Zheming Gao,Xingwei Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:145: 109953-109953 被引量:10
标识
DOI:10.1016/j.patcog.2023.109953
摘要

Class imbalance problem commonly exists in multi-label classification (MLC) tasks. It has non-negligible impacts on the classifier performance and has drawn extensive attention in recent years. Borderline oversampling has been widely used in single-label learning as a competitive technique in dealing with class imbalance. Nevertheless, the borderline samples in multi-label data sets (MLDs) have not been studied. Hence, this paper deeply discussed the borderline samples in MLDs and found they have different neighboring relationships with class borders, which makes their roles different in the classifier training. For that, they are divided into two types named the self-borderline samples and the cross-borderline samples. Further, a novel MLDs resampling approach called Multi-Label Borderline Oversampling Technique (MLBOTE) is proposed for multi-label imbalanced learning. MLBOTE identifies three types of seed samples, including interior, self-borderline, and cross-borderline samples, and different oversampling mechanisms are designed for them, respectively. Meanwhile, it regards not only the minority classes but also the classes suffering from one-vs-rest imbalance as those in need of oversampling. Experiments on eight data sets with nine MLC algorithms and three base classifiers are carried out to compare MLBOTE with some state-of-art MLDs resampling techniques. The results show MLBOTE outperforms other methods in various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助香蕉寒梅采纳,获得10
2秒前
初空月儿发布了新的文献求助10
2秒前
3秒前
Dester发布了新的文献求助60
3秒前
youlinn发布了新的文献求助30
3秒前
酷炫的幻丝完成签到 ,获得积分10
3秒前
4秒前
泽锦臻发布了新的文献求助10
5秒前
Koalas应助优雅麦片采纳,获得20
5秒前
专注乐荷发布了新的文献求助10
5秒前
浮游应助MutantKitten采纳,获得10
7秒前
马马完成签到 ,获得积分10
8秒前
8秒前
布图格其完成签到,获得积分10
9秒前
晴天完成签到 ,获得积分10
9秒前
LLL发布了新的文献求助10
11秒前
12秒前
12秒前
丘比特应助LYYYY采纳,获得10
13秒前
14秒前
感冒药发布了新的文献求助10
18秒前
Hello应助benhzh采纳,获得10
18秒前
18秒前
19秒前
narcol发布了新的文献求助30
19秒前
Lucas应助LLL采纳,获得10
20秒前
边快乐9296完成签到,获得积分10
24秒前
Esther发布了新的文献求助50
24秒前
28秒前
33秒前
35秒前
Dester驳回了Akim应助
35秒前
35秒前
香蕉寒梅发布了新的文献求助10
35秒前
Zzz发布了新的文献求助10
35秒前
pilgrim应助晨曦采纳,获得10
35秒前
han123123发布了新的文献求助10
36秒前
38秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720