已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recognizing materials in cultural relic images using computer vision and attention mechanism

计算机科学 文化遗产 Python(编程语言) 机制(生物学) 人工智能 上传 人工神经网络 图像(数学) 计算机视觉 万维网 考古 历史 哲学 认识论 操作系统
作者
Huining Pei,C. Zhang,Xinxin Zhang,Xinyu Liu,Yujie Ma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:239: 122399-122399 被引量:3
标识
DOI:10.1016/j.eswa.2023.122399
摘要

Different cultural backgrounds give birth to distinct styles of cultural heritage. In order to explore the relationship between the cultural relics' materials and the specific cultural attributes, a new method for the recognition of cultural relics' image materials based on computer vision and attention mechanism is proposed. Moreover, this paper analyzes the relationship between Chinese traditional cultural relics and Chinese dynasties as an example. The methodology of this work consists first of using Python to collect and manually screen cultural relic images of common material types. Then, the nine datasets with different materials are uploaded to the EfficientNet-B0 network with the attention mechanism for iterative training. The best weight model is stored and put to the test. Finally, the improved EfficientNet-B0 network is applied to recognize the cultural relics image datasets of each dynasty, and the relationship between the materials and the cultural attributes of each dynasty is analyzed. As for the outcomes, the experimental results show that the EfficientNet-B0 model, with the attention mechanism, can effectively enhance the extraction of image material information, and the accuracy of the recognized cultural relics image materials reaches up to 88.15%, with an average precision of 83.3%. The comparison experiment on the material dataset shows that the proposed method has excellent ability in the recognition of material image compared with other common image recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wdj7171发布了新的文献求助10
2秒前
调研昵称发布了新的文献求助10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
xiaojcom应助科研通管家采纳,获得50
4秒前
今后应助科研通管家采纳,获得10
4秒前
wwz发布了新的文献求助50
5秒前
称心完成签到 ,获得积分10
5秒前
qz完成签到,获得积分20
7秒前
WWXWWX应助冰冰采纳,获得10
9秒前
司忆完成签到 ,获得积分10
9秒前
脑洞疼应助开放行恶采纳,获得10
10秒前
11秒前
11秒前
Lojong完成签到,获得积分10
13秒前
yxh295完成签到,获得积分10
14秒前
14秒前
獭獭发布了新的文献求助10
14秒前
77发布了新的文献求助10
17秒前
19秒前
酷波er应助1234采纳,获得10
19秒前
23秒前
23秒前
24秒前
吹梦西洲完成签到 ,获得积分10
25秒前
耶瑟儿发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
27秒前
28秒前
WangRui发布了新的文献求助10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241626
求助须知:如何正确求助?哪些是违规求助? 2886118
关于积分的说明 8241740
捐赠科研通 2554651
什么是DOI,文献DOI怎么找? 1382725
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625295