Recognizing materials in cultural relic images using computer vision and attention mechanism

计算机科学 文化遗产 Python(编程语言) 机制(生物学) 人工智能 上传 人工神经网络 图像(数学) 计算机视觉 万维网 考古 历史 哲学 认识论 操作系统
作者
Huining Pei,Chuyi Zhang,Xinxin Zhang,Xinyu Liu,Yujie Ma
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:239: 122399-122399 被引量:5
标识
DOI:10.1016/j.eswa.2023.122399
摘要

Different cultural backgrounds give birth to distinct styles of cultural heritage. In order to explore the relationship between the cultural relics' materials and the specific cultural attributes, a new method for the recognition of cultural relics' image materials based on computer vision and attention mechanism is proposed. Moreover, this paper analyzes the relationship between Chinese traditional cultural relics and Chinese dynasties as an example. The methodology of this work consists first of using Python to collect and manually screen cultural relic images of common material types. Then, the nine datasets with different materials are uploaded to the EfficientNet-B0 network with the attention mechanism for iterative training. The best weight model is stored and put to the test. Finally, the improved EfficientNet-B0 network is applied to recognize the cultural relics image datasets of each dynasty, and the relationship between the materials and the cultural attributes of each dynasty is analyzed. As for the outcomes, the experimental results show that the EfficientNet-B0 model, with the attention mechanism, can effectively enhance the extraction of image material information, and the accuracy of the recognized cultural relics image materials reaches up to 88.15%, with an average precision of 83.3%. The comparison experiment on the material dataset shows that the proposed method has excellent ability in the recognition of material image compared with other common image recognition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
筷子夹豆腐脑完成签到,获得积分10
刚刚
jiahao完成签到,获得积分10
3秒前
他芯通完成签到,获得积分10
6秒前
Grin完成签到,获得积分10
7秒前
不着四六的岁月完成签到,获得积分10
7秒前
lzz完成签到 ,获得积分10
8秒前
egoistMM完成签到,获得积分10
9秒前
xiuwen完成签到 ,获得积分10
10秒前
科研zhu完成签到,获得积分20
10秒前
lylyspeechless完成签到,获得积分10
11秒前
宣以晴完成签到,获得积分10
12秒前
ji发布了新的文献求助10
13秒前
JY'完成签到,获得积分10
13秒前
陈无敌完成签到 ,获得积分10
13秒前
14秒前
健壮的秋寒完成签到,获得积分10
15秒前
Yiping完成签到,获得积分10
16秒前
踏实采波完成签到,获得积分10
16秒前
rong完成签到,获得积分10
17秒前
17秒前
baidu完成签到,获得积分10
17秒前
JamesPei应助MM采纳,获得10
17秒前
milalala完成签到 ,获得积分10
18秒前
自信晓旋完成签到,获得积分10
19秒前
斯文败类应助lailai采纳,获得10
21秒前
21秒前
水滴发布了新的文献求助10
21秒前
Arthit发布了新的文献求助30
21秒前
关键词完成签到,获得积分10
22秒前
桃子汽水完成签到 ,获得积分10
22秒前
ABCDE完成签到,获得积分10
22秒前
梦璃完成签到 ,获得积分10
23秒前
24秒前
侯zijun完成签到,获得积分10
24秒前
Sieg完成签到 ,获得积分10
24秒前
爱你沛沛完成签到 ,获得积分10
26秒前
27秒前
瘦瘦小丸子完成签到,获得积分10
28秒前
CipherSage应助ji采纳,获得10
29秒前
wang完成签到,获得积分10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212802
求助须知:如何正确求助?哪些是违规求助? 4388834
关于积分的说明 13664925
捐赠科研通 4249578
什么是DOI,文献DOI怎么找? 2331648
邀请新用户注册赠送积分活动 1329339
关于科研通互助平台的介绍 1282841