Sample size calculation for cross-sectional studies

样本量测定 计算机科学 样品(材料) 过程(计算) 质量(理念) 软件 二元分析 数据科学 统计能力 管理科学 数据挖掘 统计 数学 机器学习 工程类 认识论 操作系统 哲学 化学 色谱法 程序设计语言
作者
Nikita A. Mitkin,Sergei N. Drachev,E. A. Kriеger,Vitaly A. Postoev,А М Гржибовский
出处
期刊:Èkologiâ čeloveka [Northern State Medical University]
卷期号:30 (7): 509-522 被引量:3
标识
DOI:10.17816/humeco569406
摘要

The cross-sectional study design is widely prevalent in Russian medical literature. However, a significant number of these studies neglect to calculate the sample size during the planning phase, and the analysis often relies solely on basic bivariate statistics. This compromises the validity of the findings and increases the risk of drawing inaccurate conclusions. The scientific rigor of a study depends on a quality of planning, a clear problem statement, and precise formulation of statistical hypotheses, which are then tested using the most appropriate analytical methods. At the core of this process lies the determination of the appropriate sample size. The primary objective of this article is to provide a comprehensive, step-by-step guide for the sample size calculation process. By adhering to our guidelines, researchers can ensure that their cross-sectional studies possess sufficient statistical power to generate meaningful results. We acknowledge the significance of tailoring sample size calculations to the specific objectives and data characteristics of each study. Therefore, our approach is designed to be flexible and adaptable, accommodating the unique requirements of diverse research endeavors. There are several software options available for sample size calculation; however, we use the G*Power software for all the examples presented in this paper. Our guide is designed to provide practical understanding of the topic, with each step being accompanied by illustrative examples and detailed screenshots. This approach ensures that the material is not only understandable but also applicable in real-world scenarios. Furthermore, we take the extra step of interpreting every dialog box and screenshot, aiming to create a comfortable user experience with the software. We hope that this paper will serve as a valuable guide in the planning stage of a study, helping researchers to address a wider range of issues and reliably estimate the associations between selected exposures and the outcomes of interest with sufficient statistical power.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dhuandn完成签到,获得积分20
1秒前
逍遥完成签到 ,获得积分10
1秒前
JamesPei应助炙热的尔蓉采纳,获得10
1秒前
我叫马友才呀完成签到,获得积分10
1秒前
nengzou发布了新的文献求助10
1秒前
百草发布了新的文献求助10
2秒前
renlangfen发布了新的文献求助10
2秒前
星星发布了新的文献求助10
3秒前
jiayou发布了新的文献求助10
3秒前
完美世界应助正直千兰采纳,获得10
3秒前
不入发布了新的文献求助40
3秒前
老李发布了新的文献求助10
4秒前
gujianhua完成签到,获得积分10
4秒前
渊山完成签到,获得积分10
5秒前
梁嘉琦完成签到,获得积分10
7秒前
wgl完成签到,获得积分10
7秒前
7秒前
newstrong完成签到,获得积分10
7秒前
7秒前
adagio完成签到,获得积分10
8秒前
聆听雨完成签到,获得积分10
8秒前
缪尔岚完成签到,获得积分10
8秒前
8秒前
zzzzz完成签到,获得积分10
9秒前
9秒前
gujianhua发布了新的文献求助10
9秒前
颇黎完成签到,获得积分10
10秒前
英俊的铭应助nengzou采纳,获得10
10秒前
小鱼完成签到,获得积分10
11秒前
星星完成签到,获得积分10
11秒前
11秒前
11秒前
温暖小松鼠完成签到 ,获得积分10
12秒前
Jiayou Zhang完成签到,获得积分10
12秒前
guanzhuang完成签到,获得积分10
12秒前
老李完成签到,获得积分10
12秒前
黄义军发布了新的文献求助10
12秒前
啦啦啦完成签到,获得积分10
13秒前
13秒前
123发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587