Lightweight multi-objective evolutionary neural architecture search with low-cost proxy metrics

计算机科学 公制(单位) 网络体系结构 代理(统计) 人工神经网络 计算 进化算法 建筑 性能指标 集合(抽象数据类型) 机器学习 数据挖掘 人工智能 算法 艺术 运营管理 管理 经济 视觉艺术 程序设计语言 计算机安全
作者
Ngoc Hoang Luong,Quan Phan,An Vo,Tan Ngoc Pham,Dzung Tri Bui
出处
期刊:Information Sciences [Elsevier BV]
卷期号:655: 119856-119856 被引量:5
标识
DOI:10.1016/j.ins.2023.119856
摘要

Multi-Objective Evolutionary Neural Architecture Search (MOENAS) methods employ evolutionary algorithms to approximate a set of architectures representing optimal trade-offs between network performance and complexity. Directly estimating network performance via error rates or losses incurs long runtimes due to the computationally expensive network training procedure. Instead, low-cost metrics that require no network training have been proposed as a proxy for network performance. However, these metrics might exhibit inconsistent correlations with network performance across different search spaces. The influences of training-based and training-free metrics on the effectiveness and efficiency of MOENAS are still under-explored. We introduce the Enhanced Training-Free MOENAS (E-TF-MOENAS) that employs the widely-used NSGA-II as the search algorithm and optimizes multiple training-free performance metrics as separate objectives. Experiments on NAS-Bench-101 and NAS-Bench-201 show that E-TF-MOENAS outperforms training-free methods that use a single training-free performance metric and could obtain comparable results to training-based methods but with approximately 30 times less computation cost. E-TF-MOENAS obtains architectures in NAS-Bench-201 with state-of-the-art mean accuracies of 94.37%, 73.50%, and 46.62% for CIFAR-10, CIFAR-100, and ImageNet16-120, respectively, within less than 3 GPU hours. It is beneficial to utilize multiple training-free proxy metrics simultaneously and E-TF-MOENAS provides a convenient framework for building such an efficient NAS approach. The source code can be found at https://github.com/ELO-Lab/E-TF-MOENAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙燕应助PMoLGGYM2021采纳,获得10
刚刚
玄月发布了新的文献求助10
1秒前
QDU发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
hyhyhyhy发布了新的文献求助10
7秒前
徐星军完成签到,获得积分10
7秒前
PANDA发布了新的文献求助10
9秒前
顺利的冬菱完成签到,获得积分10
10秒前
orixero应助hyhyhyhy采纳,获得10
11秒前
PANGDA发布了新的文献求助10
12秒前
QDU完成签到,获得积分10
13秒前
14秒前
潜水读者发布了新的文献求助10
14秒前
安静的寒风完成签到,获得积分10
15秒前
华仔应助草上飞采纳,获得10
16秒前
16秒前
PANDA完成签到,获得积分10
18秒前
研友_GZb9an完成签到,获得积分10
19秒前
20秒前
平常的如曼完成签到,获得积分10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
哈哈哈应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
aldehyde应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得30
22秒前
22秒前
22秒前
李健应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
Xian发布了新的文献求助10
22秒前
22秒前
aldehyde应助科研通管家采纳,获得10
22秒前
sxhdxwf完成签到 ,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176