亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Backstepping-Sliding-Mode-Based Neural Network Control for Electro-Hydraulic Actuator Subject to Completely Unknown System Dynamics

反推 控制理论(社会学) 控制工程 计算机科学 执行机构 人工神经网络 系统动力学 控制器(灌溉) 非线性系统 自适应控制 控制系统 工程类 人工智能 控制(管理) 农学 物理 电气工程 量子力学 生物
作者
Hoai Vu Anh Truong,Seokho Nam,Sejin Kim,Young-Wan Kim,Wan Kyun Chung
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:8
标识
DOI:10.1109/tase.2023.3323148
摘要

Requirements of the system dynamics and unknown disturbance and uncertainty suppression bring certain challenges in developing advanced control algorithms for electro-hydraulic actuators (EHAs). Usually, radial basis function neural network (RBFNN) is employed to address unknown nonlinear dynamics; however, traditional approaches require more effort in adopting multi-estimated parameters when designing adaptive laws, especially in the case of completely unknown system dynamics. Hence, this paper proposes a novel adaptive neural network control, based on the backstepping control (BSC) framework, to compensate for unknown system dynamics and also to reduce the problem of the multi-estimated parameters based on the norm estimation technique. To facilitate the proposed control implementation, a new system transformation is first expressed in such a way that the same key properties as the original system are upheld. Besides, extended state observers (ESOs) are employed to fundamentally address the redundant remaining dynamics of unknown terms, disturbance, and uncertainty. In addition, the command filter (CF) technique is also involved to deal with the explosion complexity in the BSC design. The stability of the closed-loop system and the effectiveness of the proposed controller are theoretically guaranteed via mathematical proof with comparative experiments. Note to Practitioners —This article was motivated by the shortcomings of the published works in addressing the problem of completely unknown system dynamics for Electro-hydraulic Actuators subject to disturbances and unstructured uncertainties. To overcome these concerns, an approximation technique for the dynamical behavior compensation and extended state observers for the disturbances and uncertainties suppression have been carried out in such a new way that reduces a number of estimated parameters compared to the conventional approximation mechanism. Moreover, this new-way approximation also facilitates a combination of the command-filter technique to cope with the complexity explosion issue, which always exists when employing the backstepping control scheme to guarantee the closed-loop system stability. From the derived control strategy and with good experimental results, this proposed method can be considered a premise to expand to other topics in the field of automatically controlled systems and contributes to broad interest in both academic and industrial applications of system modeling and dealing with unexpected impacts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助耕云钓月采纳,获得10
刚刚
清一完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
shinn发布了新的文献求助10
4秒前
桐夜完成签到 ,获得积分10
4秒前
dada完成签到,获得积分10
7秒前
Soient发布了新的文献求助10
8秒前
8秒前
shinn发布了新的文献求助10
9秒前
16秒前
16秒前
舒服的觅夏完成签到,获得积分10
20秒前
21秒前
赘婿应助shinn采纳,获得10
29秒前
阿里完成签到,获得积分10
31秒前
1111关注了科研通微信公众号
33秒前
34秒前
动听的涵山完成签到,获得积分10
36秒前
思源应助郴欧尼采纳,获得10
36秒前
耕云钓月发布了新的文献求助10
38秒前
长安宁完成签到 ,获得积分10
39秒前
40秒前
45秒前
赘婿应助耕云钓月采纳,获得10
47秒前
shinn发布了新的文献求助10
48秒前
Ava应助shinn采纳,获得10
53秒前
54秒前
55秒前
1分钟前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247