Backstepping-Sliding-Mode-Based Neural Network Control for Electro-Hydraulic Actuator Subject to Completely Unknown System Dynamics

反推 控制理论(社会学) 控制工程 计算机科学 执行机构 人工神经网络 系统动力学 控制器(灌溉) 非线性系统 自适应控制 控制系统 工程类 人工智能 控制(管理) 农学 物理 电气工程 量子力学 生物
作者
Hoai Vu Anh Truong,Seokho Nam,Sejin Kim,Young-Wan Kim,Wan Kyun Chung
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:8
标识
DOI:10.1109/tase.2023.3323148
摘要

Requirements of the system dynamics and unknown disturbance and uncertainty suppression bring certain challenges in developing advanced control algorithms for electro-hydraulic actuators (EHAs). Usually, radial basis function neural network (RBFNN) is employed to address unknown nonlinear dynamics; however, traditional approaches require more effort in adopting multi-estimated parameters when designing adaptive laws, especially in the case of completely unknown system dynamics. Hence, this paper proposes a novel adaptive neural network control, based on the backstepping control (BSC) framework, to compensate for unknown system dynamics and also to reduce the problem of the multi-estimated parameters based on the norm estimation technique. To facilitate the proposed control implementation, a new system transformation is first expressed in such a way that the same key properties as the original system are upheld. Besides, extended state observers (ESOs) are employed to fundamentally address the redundant remaining dynamics of unknown terms, disturbance, and uncertainty. In addition, the command filter (CF) technique is also involved to deal with the explosion complexity in the BSC design. The stability of the closed-loop system and the effectiveness of the proposed controller are theoretically guaranteed via mathematical proof with comparative experiments. Note to Practitioners —This article was motivated by the shortcomings of the published works in addressing the problem of completely unknown system dynamics for Electro-hydraulic Actuators subject to disturbances and unstructured uncertainties. To overcome these concerns, an approximation technique for the dynamical behavior compensation and extended state observers for the disturbances and uncertainties suppression have been carried out in such a new way that reduces a number of estimated parameters compared to the conventional approximation mechanism. Moreover, this new-way approximation also facilitates a combination of the command-filter technique to cope with the complexity explosion issue, which always exists when employing the backstepping control scheme to guarantee the closed-loop system stability. From the derived control strategy and with good experimental results, this proposed method can be considered a premise to expand to other topics in the field of automatically controlled systems and contributes to broad interest in both academic and industrial applications of system modeling and dealing with unexpected impacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zn应助牛文文采纳,获得10
2秒前
2秒前
3秒前
贤惠的白开水完成签到 ,获得积分10
3秒前
英姑应助林林林采纳,获得10
4秒前
科研小民工应助Anquan采纳,获得30
4秒前
cyt9999发布了新的文献求助10
5秒前
天天快乐应助好难啊采纳,获得10
6秒前
干净的烧鹅完成签到,获得积分10
7秒前
8秒前
8秒前
在人中发布了新的文献求助10
9秒前
9秒前
fls221完成签到,获得积分10
10秒前
Laity完成签到,获得积分10
12秒前
12秒前
健忘捕发布了新的文献求助10
12秒前
林林林发布了新的文献求助10
13秒前
ok完成签到 ,获得积分10
14秒前
乐乐应助wewe采纳,获得30
14秒前
14秒前
拥有八根情丝完成签到 ,获得积分10
15秒前
科研通AI5应助Rex采纳,获得10
16秒前
17秒前
情怀应助樱桃小丸子采纳,获得10
18秒前
好难啊发布了新的文献求助10
19秒前
19秒前
23秒前
24秒前
24秒前
wewe完成签到,获得积分20
25秒前
李大爷发布了新的文献求助10
25秒前
Kevin完成签到,获得积分10
27秒前
酷炫的尔丝完成签到 ,获得积分10
27秒前
Hello应助标致的蛋挞采纳,获得50
28秒前
大个应助明亮的宁采纳,获得10
29秒前
Rainbow发布了新的文献求助10
29秒前
anyone发布了新的文献求助30
30秒前
充电宝应助SY采纳,获得10
31秒前
D先生完成签到,获得积分20
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851