Kalman Filter and Its Application in Data Assimilation

集合卡尔曼滤波器 卡尔曼滤波器 不变扩展卡尔曼滤波器 扩展卡尔曼滤波器 快速卡尔曼滤波 α-β滤光片 数据同化 计算机科学 无味变换 算法 控制理论(社会学) 人工智能 移动视界估计 地理 气象学 控制(管理)
作者
Bowen Wang,Zhibin Sun,Xinyue Jiang,Jun‐Jie Zeng,Runqing Liu
出处
期刊:Atmosphere [MDPI AG]
卷期号:14 (8): 1319-1319 被引量:5
标识
DOI:10.3390/atmos14081319
摘要

In 1960, R.E. Kalman published his famous paper describing a recursive solution, the Kalman filter, to the discrete-data linear filtering problem. In the following decades, thanks to the continuous progress of numerical computing, as well as the increasing demand for weather prediction, target tracking, and many other problems, the Kalman filter has gradually become one of the most important tools in science and engineering. With the continuous improvement of its theory, the Kalman filter and its derivative algorithms have become one of the core algorithms in optimal estimation. This paper attempts to systematically collect and sort out the basic principles of the Kalman filter and some of its important derivative algorithms (mainly including the Extended Kalman filter (EKF), the Unscented Kalman filter (UKF), the Ensemble Kalman filter (EnKF)), as well as the scope of their application, and also to compare their advantages and limitations. In addition, because there are a large number of applications based on the Kalman filter in data assimilation, this paper also provides examples and classifies the applications of both the Kalman filter and its derivative algorithms in the field of data assimilation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LHD关闭了LHD文献求助
刚刚
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
酷炫的蛋挞关注了科研通微信公众号
3秒前
su发布了新的文献求助10
3秒前
jun完成签到,获得积分10
4秒前
Ava应助熊猫采纳,获得10
4秒前
GPTea应助快乐小白采纳,获得30
5秒前
jia完成签到 ,获得积分10
5秒前
6秒前
赘婿应助li1_李采纳,获得10
6秒前
fim461847完成签到,获得积分20
7秒前
FashionBoy应助jzc0531采纳,获得10
7秒前
RLV关闭了RLV文献求助
8秒前
CJY发布了新的文献求助20
8秒前
9秒前
Lucas应助南巷采纳,获得10
9秒前
Cloud完成签到,获得积分10
9秒前
lyx完成签到 ,获得积分10
9秒前
9秒前
李垣锦发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
yy发布了新的文献求助10
12秒前
AN应助fim461847采纳,获得30
12秒前
不爱科研关注了科研通微信公众号
13秒前
CJY完成签到,获得积分10
14秒前
15秒前
白开水发布了新的文献求助10
15秒前
15秒前
16秒前
hulili发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
情怀应助安静的画笔采纳,获得10
18秒前
18秒前
iris发布了新的文献求助10
18秒前
内向的浩宇完成签到,获得积分10
19秒前
星星发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720909
求助须知:如何正确求助?哪些是违规求助? 5263062
关于积分的说明 15292658
捐赠科研通 4870174
什么是DOI,文献DOI怎么找? 2615270
邀请新用户注册赠送积分活动 1565197
关于科研通互助平台的介绍 1522273