Kalman Filter and Its Application in Data Assimilation

集合卡尔曼滤波器 卡尔曼滤波器 不变扩展卡尔曼滤波器 扩展卡尔曼滤波器 快速卡尔曼滤波 α-β滤光片 数据同化 计算机科学 无味变换 算法 控制理论(社会学) 人工智能 移动视界估计 地理 气象学 控制(管理)
作者
Bowen Wang,Zhibin Sun,Xinyue Jiang,Jun‐Jie Zeng,Runqing Liu
出处
期刊:Atmosphere [MDPI AG]
卷期号:14 (8): 1319-1319 被引量:5
标识
DOI:10.3390/atmos14081319
摘要

In 1960, R.E. Kalman published his famous paper describing a recursive solution, the Kalman filter, to the discrete-data linear filtering problem. In the following decades, thanks to the continuous progress of numerical computing, as well as the increasing demand for weather prediction, target tracking, and many other problems, the Kalman filter has gradually become one of the most important tools in science and engineering. With the continuous improvement of its theory, the Kalman filter and its derivative algorithms have become one of the core algorithms in optimal estimation. This paper attempts to systematically collect and sort out the basic principles of the Kalman filter and some of its important derivative algorithms (mainly including the Extended Kalman filter (EKF), the Unscented Kalman filter (UKF), the Ensemble Kalman filter (EnKF)), as well as the scope of their application, and also to compare their advantages and limitations. In addition, because there are a large number of applications based on the Kalman filter in data assimilation, this paper also provides examples and classifies the applications of both the Kalman filter and its derivative algorithms in the field of data assimilation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波波发布了新的文献求助10
1秒前
耶耶耶耶发布了新的文献求助10
1秒前
2秒前
Ava应助漫天采纳,获得10
2秒前
2秒前
2秒前
曹家如完成签到,获得积分10
2秒前
3秒前
奕师完成签到,获得积分10
3秒前
思源应助听话的初之采纳,获得10
3秒前
兰先生发布了新的文献求助10
4秒前
大朋完成签到,获得积分10
4秒前
4秒前
Lucas应助workingwalking采纳,获得10
5秒前
5秒前
芒果完成签到,获得积分10
5秒前
CipherSage应助未来科研大佬采纳,获得10
6秒前
解羽完成签到,获得积分10
6秒前
ekko完成签到,获得积分20
7秒前
7秒前
aloong完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
汉堡包应助qaqfdmmj采纳,获得10
9秒前
zzzllove完成签到,获得积分10
9秒前
9秒前
可耐的宛丝完成签到,获得积分10
9秒前
幸未晚发布了新的文献求助10
10秒前
11秒前
无极微光应助照相机采纳,获得20
11秒前
11秒前
香蕉诗蕊应助解羽采纳,获得10
11秒前
11秒前
12秒前
nini应助麦麦欧巴采纳,获得10
12秒前
12秒前
12秒前
NexusExplorer应助吕喜梅采纳,获得10
12秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726