亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Selecting the appropriate features in battery lifetime predictions

计算机科学 可靠性工程 电池(电) 法律工程学 环境科学 核工程 工程类 热力学 功率(物理) 物理
作者
Alexis Geslin,Bruis van Vlijmen,Xiao Cui,Arjun Bhargava,Patrick A. Asinger,Richard D. Braatz,William C. Chueh
出处
期刊:Joule [Elsevier BV]
卷期号:7 (9): 1956-1965 被引量:21
标识
DOI:10.1016/j.joule.2023.07.021
摘要

Data-driven models are being developed to predict battery lifetime because of their ability to capture complex aging phenomena. In this perspective, we demonstrate that it is critical to consider the use cases when developing prediction models. Specifically, model features need to be classified to differentiate whether or not they encode cycling conditions, which are sometimes used to artificially increase the diversity in battery lifetime. Many use cases require the prediction of cell-to-cell variability between identically cycled cells, such as production quality control. Developing models for such prediction tasks thus requires features that do not rely on cycling conditions. Using the dataset published by Severson et al. in 2019 as an example, we show that features encoding cycling conditions boost model accuracy because they predict the protocol-to-protocol variability. However, models based on these features are less transferable when deployed on identically cycled cells. Our analysis underscores the concept of using the right features for the right prediction task. We encourage researchers to consider the usage scenarios that they are developing models for and whether or not to include cycling conditions in their models in order to avoid data leakage. Equally important, benchmarking model performance should be carried out between models developed for the same use case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YU完成签到 ,获得积分10
3秒前
9秒前
州府十三发布了新的文献求助10
13秒前
13秒前
俭朴蜜蜂完成签到 ,获得积分10
14秒前
不能说的秘密完成签到,获得积分10
14秒前
浮游应助顺心奇玉采纳,获得10
16秒前
cheng完成签到 ,获得积分10
22秒前
Owen应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得200
22秒前
25秒前
27秒前
甜甜如之发布了新的文献求助10
32秒前
33秒前
在水一方应助细腻的梦之采纳,获得10
37秒前
38秒前
41秒前
43秒前
chujun_cai完成签到 ,获得积分10
44秒前
46秒前
将将将将完成签到 ,获得积分10
47秒前
48秒前
50秒前
53秒前
54秒前
bkagyin应助祝小鱼采纳,获得10
54秒前
wdd完成签到 ,获得积分10
54秒前
左一酱完成签到 ,获得积分10
59秒前
59秒前
甜甜如之完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ar发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小林同学0219完成签到 ,获得积分10
1分钟前
qzxwsa发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935132
求助须知:如何正确求助?哪些是违规求助? 4202689
关于积分的说明 13058407
捐赠科研通 3977406
什么是DOI,文献DOI怎么找? 2179488
邀请新用户注册赠送积分活动 1195592
关于科研通互助平台的介绍 1107108