Selecting the appropriate features in battery lifetime predictions

计算机科学 可靠性工程 电池(电) 法律工程学 环境科学 核工程 工程类 热力学 功率(物理) 物理
作者
Alexis Geslin,Bruis van Vlijmen,Xiao Cui,Arjun Bhargava,Patrick A. Asinger,Richard D. Braatz,William C. Chueh
出处
期刊:Joule [Elsevier BV]
卷期号:7 (9): 1956-1965 被引量:21
标识
DOI:10.1016/j.joule.2023.07.021
摘要

Data-driven models are being developed to predict battery lifetime because of their ability to capture complex aging phenomena. In this perspective, we demonstrate that it is critical to consider the use cases when developing prediction models. Specifically, model features need to be classified to differentiate whether or not they encode cycling conditions, which are sometimes used to artificially increase the diversity in battery lifetime. Many use cases require the prediction of cell-to-cell variability between identically cycled cells, such as production quality control. Developing models for such prediction tasks thus requires features that do not rely on cycling conditions. Using the dataset published by Severson et al. in 2019 as an example, we show that features encoding cycling conditions boost model accuracy because they predict the protocol-to-protocol variability. However, models based on these features are less transferable when deployed on identically cycled cells. Our analysis underscores the concept of using the right features for the right prediction task. We encourage researchers to consider the usage scenarios that they are developing models for and whether or not to include cycling conditions in their models in order to avoid data leakage. Equally important, benchmarking model performance should be carried out between models developed for the same use case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晓指晴天发布了新的文献求助10
1秒前
菠萝吹雪完成签到,获得积分10
1秒前
liuyanq发布了新的文献求助10
1秒前
NexusExplorer应助头发多多采纳,获得10
1秒前
2秒前
隐形曼青应助研友_方达采纳,获得10
3秒前
3秒前
令狐初之发布了新的文献求助10
5秒前
斯文败类应助机智羞花采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
令狐初之完成签到,获得积分10
10秒前
Hello应助gww采纳,获得10
13秒前
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得50
15秒前
wanci应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
盛yyyy完成签到 ,获得积分10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
xiao-lei应助科研通管家采纳,获得10
15秒前
roclie发布了新的文献求助10
15秒前
慕青应助ShaLi123采纳,获得10
16秒前
joy完成签到,获得积分10
16秒前
18秒前
北粥发布了新的文献求助10
20秒前
不安青牛应助积极的凌波采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447