Selecting the appropriate features in battery lifetime predictions

计算机科学 可靠性工程 电池(电) 法律工程学 环境科学 核工程 工程类 热力学 物理 功率(物理)
作者
Alexis Geslin,Bruis van Vlijmen,Xiao Cui,Arjun Bhargava,Patrick A. Asinger,Richard D. Braatz,William C. Chueh
出处
期刊:Joule [Elsevier BV]
卷期号:7 (9): 1956-1965 被引量:21
标识
DOI:10.1016/j.joule.2023.07.021
摘要

Data-driven models are being developed to predict battery lifetime because of their ability to capture complex aging phenomena. In this perspective, we demonstrate that it is critical to consider the use cases when developing prediction models. Specifically, model features need to be classified to differentiate whether or not they encode cycling conditions, which are sometimes used to artificially increase the diversity in battery lifetime. Many use cases require the prediction of cell-to-cell variability between identically cycled cells, such as production quality control. Developing models for such prediction tasks thus requires features that do not rely on cycling conditions. Using the dataset published by Severson et al. in 2019 as an example, we show that features encoding cycling conditions boost model accuracy because they predict the protocol-to-protocol variability. However, models based on these features are less transferable when deployed on identically cycled cells. Our analysis underscores the concept of using the right features for the right prediction task. We encourage researchers to consider the usage scenarios that they are developing models for and whether or not to include cycling conditions in their models in order to avoid data leakage. Equally important, benchmarking model performance should be carried out between models developed for the same use case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荔枝完成签到 ,获得积分10
1秒前
foceman发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
赘婿应助jingyao采纳,获得10
2秒前
Gurlstrian完成签到,获得积分10
3秒前
Polaris完成签到,获得积分10
3秒前
bkagyin应助朽木采纳,获得10
3秒前
田雨欣完成签到,获得积分20
4秒前
鲲鹏戏龙完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
所所应助joy采纳,获得30
4秒前
5秒前
酷炫的飞阳完成签到,获得积分20
5秒前
ddd完成签到,获得积分10
5秒前
无辜的星月完成签到,获得积分10
5秒前
科研通AI5应助闹心采纳,获得10
6秒前
6秒前
黑山老妖发布了新的文献求助10
6秒前
Neko应助远山淡影_cy采纳,获得20
6秒前
YYXS发布了新的文献求助10
7秒前
semigreen发布了新的文献求助10
7秒前
7秒前
谦让的冰海完成签到,获得积分10
7秒前
魁梧的白羊完成签到,获得积分10
7秒前
8秒前
lily完成签到,获得积分10
8秒前
foceman完成签到,获得积分10
8秒前
ping发布了新的文献求助10
8秒前
李铃锐发布了新的文献求助10
8秒前
科研通AI2S应助lbw采纳,获得30
8秒前
9秒前
li发布了新的文献求助10
9秒前
堪祥完成签到,获得积分10
10秒前
10秒前
GreenV完成签到,获得积分10
10秒前
河西完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082008
求助须知:如何正确求助?哪些是违规求助? 4299523
关于积分的说明 13395840
捐赠科研通 4123323
什么是DOI,文献DOI怎么找? 2258267
邀请新用户注册赠送积分活动 1262566
关于科研通互助平台的介绍 1196568