已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Selecting the appropriate features in battery lifetime predictions

计算机科学 可靠性工程 电池(电) 法律工程学 环境科学 核工程 工程类 热力学 物理 功率(物理)
作者
Alexis Geslin,Bruis van Vlijmen,Xiao Cui,Arjun Bhargava,Patrick A. Asinger,Richard D. Braatz,William C. Chueh
出处
期刊:Joule [Elsevier BV]
卷期号:7 (9): 1956-1965 被引量:21
标识
DOI:10.1016/j.joule.2023.07.021
摘要

Data-driven models are being developed to predict battery lifetime because of their ability to capture complex aging phenomena. In this perspective, we demonstrate that it is critical to consider the use cases when developing prediction models. Specifically, model features need to be classified to differentiate whether or not they encode cycling conditions, which are sometimes used to artificially increase the diversity in battery lifetime. Many use cases require the prediction of cell-to-cell variability between identically cycled cells, such as production quality control. Developing models for such prediction tasks thus requires features that do not rely on cycling conditions. Using the dataset published by Severson et al. in 2019 as an example, we show that features encoding cycling conditions boost model accuracy because they predict the protocol-to-protocol variability. However, models based on these features are less transferable when deployed on identically cycled cells. Our analysis underscores the concept of using the right features for the right prediction task. We encourage researchers to consider the usage scenarios that they are developing models for and whether or not to include cycling conditions in their models in order to avoid data leakage. Equally important, benchmarking model performance should be carried out between models developed for the same use case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
FIN应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
zyf发布了新的文献求助10
1秒前
handsomelin完成签到,获得积分10
1秒前
涂楚捷发布了新的文献求助10
2秒前
WGS完成签到,获得积分10
3秒前
懦弱的安珊发布了新的文献求助100
3秒前
默默雪旋完成签到 ,获得积分10
4秒前
123完成签到 ,获得积分10
5秒前
木又完成签到 ,获得积分10
6秒前
不开心就吃糖完成签到 ,获得积分10
7秒前
嘻嘻完成签到 ,获得积分10
7秒前
kai chen完成签到 ,获得积分0
7秒前
清脆的飞丹完成签到,获得积分10
11秒前
xiaoya完成签到,获得积分20
12秒前
13秒前
ZT完成签到,获得积分20
13秒前
Spencer完成签到 ,获得积分10
14秒前
谨慎的友安完成签到 ,获得积分10
14秒前
文渊完成签到,获得积分0
16秒前
个性紫完成签到 ,获得积分10
16秒前
CipherSage应助蓝桉采纳,获得10
17秒前
wildeager完成签到,获得积分10
17秒前
Chaos完成签到 ,获得积分10
17秒前
曾经的电脑完成签到 ,获得积分10
18秒前
a553355发布了新的文献求助10
18秒前
18秒前
只如初完成签到 ,获得积分10
19秒前
唐tang完成签到,获得积分10
19秒前
努力的咩咩完成签到 ,获得积分10
19秒前
遇上就这样吧完成签到,获得积分0
21秒前
cheng完成签到,获得积分10
21秒前
余邴完成签到 ,获得积分10
22秒前
pterionGao完成签到 ,获得积分10
22秒前
HEHNJJ完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024