Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images

人工智能 计算机科学 计算机视觉 生成对抗网络 变压器 深度学习 生成语法 对抗制 迭代重建 相似性(几何) 图像分辨率 模式识别(心理学) 图像(数学) 工程类 电气工程 电压
作者
Weizhi Du,Shihao Tian
出处
期刊:Tsinghua Science & Technology [Tsinghua University Press]
卷期号:29 (1): 197-206 被引量:25
标识
DOI:10.26599/tst.2022.9010071
摘要

Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose, such as in low-field magnetic resonance imaging (MRI). However, image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose. In this paper, we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks (T-GANs). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助彭日晓采纳,获得10
刚刚
峰ww发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
充电宝应助勤劳dandan采纳,获得30
1秒前
2秒前
2秒前
孙燕应助Dding采纳,获得20
2秒前
2秒前
3秒前
YY发布了新的文献求助10
3秒前
3秒前
mxl发布了新的文献求助30
4秒前
yans发布了新的文献求助10
4秒前
4秒前
tamo发布了新的文献求助10
5秒前
丰富的大地完成签到,获得积分10
5秒前
ABCofMEDICIBE发布了新的文献求助10
5秒前
haiqi发布了新的文献求助10
5秒前
5秒前
hyh发布了新的文献求助10
5秒前
坦率小白菜完成签到,获得积分10
6秒前
思源应助来轩采纳,获得10
6秒前
6秒前
yang完成签到,获得积分10
6秒前
大个应助weiyu_u采纳,获得10
7秒前
8秒前
朱慧龙完成签到 ,获得积分10
8秒前
越红完成签到,获得积分10
8秒前
9秒前
吴晨曦发布了新的文献求助10
9秒前
冷艳雪卉发布了新的文献求助10
9秒前
9秒前
大方抽屉完成签到,获得积分10
9秒前
9秒前
脑洞疼应助MOOTEA采纳,获得10
9秒前
yznfly应助sunrise采纳,获得30
9秒前
10秒前
迪闪闪发光给迪闪闪发光的求助进行了留言
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788