Predicting the stacking fault energy in FCC high-entropy alloys based on data-driven machine learning

层错能 材料科学 高熵合金 合金 堆积 叠加断层 熵(时间箭头) 热力学 机器学习 人工智能 冶金 计算机科学 复合材料 位错 物理 核磁共振
作者
Xiaoyang Zhang,Ruifeng Dong,Qianqian Guo,Hua Hou,Yuhong Zhao
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:26: 4813-4824
标识
DOI:10.1016/j.jmrt.2023.08.194
摘要

The properties of high-entropy alloys (HEAs) depend primarily on the composition and content of elements. However, getting the optimal composition of alloying elements through the traditional "trial and error" method is challenging, especially for non-equiatomic HEAs with a wide range of composition space. In this study, based on the knowledge that stacking fault energy (SFE) is the most crucial intrinsic property to determine the deformation mechanism and to optimize the mechanical properties of FCC HEAs, classical machine learning classification models including support vector classification (SVC) and random forest (RF), and deep learning regression model (Back Propagation Neural Network) were established to predict the stacking fault energy of Co-Cr-Fe-Mn-Ni-V-Al high-entropy alloys. These models can obtain the SFE data of any atomic ratio composition of the FCC structured Co-Cr-Fe-Mn-Ni-V-Al high-entropy alloy quickly and accurately. The high accuracy of these models indicates that using the compositions as features to predict stacking fault energy is feasible. Meanwhile, the monotonic relationship between alloying elements and SFE makes it possible to change the SFE of high-entropy alloy by fine-tuning the composition to realize the control of material deformation mechanism and mechanical properties. Component-based machine learning models provide a new method for rapidly discovering high-entropy alloys with exceptional strength and flexibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
xiaoluoluo发布了新的文献求助10
2秒前
2秒前
2秒前
李爱国应助Anonyme采纳,获得10
3秒前
3秒前
4秒前
Maosha发布了新的文献求助10
4秒前
日富一日完成签到,获得积分10
4秒前
5秒前
5秒前
H丶化羽完成签到,获得积分10
5秒前
5秒前
粥粥发布了新的文献求助30
6秒前
6秒前
wendydqw发布了新的文献求助10
6秒前
阳光海云应助phl采纳,获得10
6秒前
绵绵面面喵呜酱完成签到,获得积分10
6秒前
小马甲应助贝果儿采纳,获得10
7秒前
DGFR完成签到,获得积分10
7秒前
7秒前
黄垚发布了新的文献求助10
7秒前
7秒前
wang456发布了新的文献求助10
8秒前
H丶化羽发布了新的文献求助10
8秒前
miaomiaojun发布了新的文献求助10
9秒前
9秒前
玛卡巴卡发布了新的文献求助10
10秒前
Iris发布了新的文献求助10
10秒前
依依发布了新的文献求助10
10秒前
NexusExplorer应助孙小猪采纳,获得10
10秒前
黄橙子发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
共享精神应助踏实滑板采纳,获得10
13秒前
Doc完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912