Predicting the stacking fault energy in FCC high-entropy alloys based on data-driven machine learning

层错能 材料科学 高熵合金 合金 堆积 叠加断层 热力学 机器学习 人工智能 算法 冶金 计算机科学 复合材料 位错 核磁共振 物理
作者
Xiaoyang Zhang,Ruifeng Dong,Qingwei Guo,Hua Hou,Yuhong Zhao
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:26: 4813-4824 被引量:14
标识
DOI:10.1016/j.jmrt.2023.08.194
摘要

The properties of high-entropy alloys (HEAs) depend primarily on the composition and content of elements. However, getting the optimal composition of alloying elements through the traditional "trial and error" method is challenging, especially for non-equiatomic HEAs with a wide range of composition space. In this study, based on the knowledge that stacking fault energy (SFE) is the most crucial intrinsic property to determine the deformation mechanism and to optimize the mechanical properties of FCC HEAs, classical machine learning classification models including support vector classification (SVC) and random forest (RF), and deep learning regression model (Back Propagation Neural Network) were established to predict the stacking fault energy of Co-Cr-Fe-Mn-Ni-V-Al high-entropy alloys. These models can obtain the SFE data of any atomic ratio composition of the FCC structured Co-Cr-Fe-Mn-Ni-V-Al high-entropy alloy quickly and accurately. The high accuracy of these models indicates that using the compositions as features to predict stacking fault energy is feasible. Meanwhile, the monotonic relationship between alloying elements and SFE makes it possible to change the SFE of high-entropy alloy by fine-tuning the composition to realize the control of material deformation mechanism and mechanical properties. Component-based machine learning models provide a new method for rapidly discovering high-entropy alloys with exceptional strength and flexibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的丹南完成签到,获得积分20
1秒前
better完成签到,获得积分10
2秒前
2秒前
友好梦岚完成签到,获得积分20
3秒前
exquisite完成签到,获得积分10
3秒前
阿曼尼完成签到 ,获得积分10
3秒前
3秒前
啵啵虎发布了新的文献求助10
4秒前
明明ming999_完成签到,获得积分10
4秒前
Sealight完成签到,获得积分10
4秒前
star完成签到,获得积分10
4秒前
4秒前
烯灯完成签到,获得积分10
5秒前
5秒前
hai发布了新的文献求助30
6秒前
水电费完成签到 ,获得积分10
6秒前
翊然甜周发布了新的文献求助20
6秒前
ANNI发布了新的文献求助10
6秒前
MY关闭了MY文献求助
7秒前
凳子琪完成签到,获得积分10
8秒前
二师兄发布了新的文献求助10
8秒前
8秒前
sue402完成签到,获得积分10
8秒前
彭于晏应助壮观的白枫采纳,获得10
9秒前
翔哥完成签到,获得积分10
9秒前
cc完成签到,获得积分10
9秒前
XZZH完成签到,获得积分10
9秒前
丘比特应助葛怀锐采纳,获得30
10秒前
10秒前
10秒前
勿奈何完成签到,获得积分10
10秒前
鱼柒完成签到 ,获得积分10
11秒前
读不完的文献啊完成签到,获得积分10
11秒前
犹豫小蚂蚁完成签到,获得积分10
11秒前
辛勤谷雪发布了新的文献求助10
11秒前
purplelove完成签到 ,获得积分10
11秒前
zp发布了新的文献求助10
11秒前
123完成签到 ,获得积分10
12秒前
12秒前
典雅问寒应助ATM采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423